Exemplo n.º 1
0
def DataRepresent(dataSet, trainingLabel):
    trainingFeatures = np.zeros((1, 252))
    # Vectorization
    CurrentGuy = 0
    for data in dataSet:
        vectorFeatures = np.zeros((data.shape[1], 1))
        # 9 axis
        for x in data:
            vectorFeatures = np.insert(vectorFeatures, vectorFeatures.shape[1], Vectorize(x), axis=1)

        # Envelope
        for idx in range(9):
            tmp = []
            for i in range(4):
                tmp.extend(dataSet[i][idx].tolist())

            envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(tmp):(idx+1)*len(tmp)]), tmp, dataSet[CurrentGuy][idx], 1))
            vectorFeatures = np.insert(vectorFeatures, vectorFeatures.shape[1], envelopeResult.T, axis=1)

        vectorFeatures = np.delete(vectorFeatures, 0, axis=1)

        trainingFeatures = np.insert(trainingFeatures, trainingFeatures.shape[0], vectorFeatures, 0)

        CurrentGuy += 1

    trainingFeatures = np.delete(trainingFeatures, 0, axis=0)

    return trainingFeatures
Exemplo n.º 2
0
def DataRepresent(trainingData, trainingLabel, rawdata_test, scaleRange, scaleMin):
    # Preprocessing
    temp_ind=rawdata_test[:,0]    
    temp_ind = temp_ind.reshape((len(temp_ind),1))
    rawdata_test = np.hstack((temp_ind, dynamicRangeCheck(rawdata_test[:,1:7])))
    [axis1, axis2, axis3, axis4, axis5, axis6] = Preprocessing(rawdata_test, maxLen=192, n=5)
    testingData = np.array([axis1, axis2, axis3, axis4, axis5, axis6])

    testingFeature = np.zeros((testingData.shape[1], 1))
    # Vectorization
    for x in testingData:
        testingFeature = np.insert(testingFeature, testingFeature.shape[1], Vectorize(x), axis=1)

    testingFeature = np.delete(testingFeature, 0, axis=1)

    # Envelope
    for idx in range(len(trainingData[0])):
        tmp = []
        for i in range(len(trainingData)):
            tmp.extend(trainingData[i][idx].tolist())

        envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(tmp):(idx+1)*len(tmp)]), tmp, testingData[idx].tolist(), 1))
        testingFeature = np.insert(testingFeature, testingFeature.shape[1], envelopeResult.T, axis=1)

    # Max-min Normalize
    testingFeature = (testingFeature-scaleMin)/scaleRange

    return testingFeature
Exemplo n.º 3
0
def DataRepresent(dataPool, trainingLabel, rawdata, scaleRange, scaleMin):
    # Preprocessing
    [axis1, _, axis3, axis4, axis5, axis6, press1, press2, press3, press4] = Preprocessing(rawdata, maxLen=192, n=5)
    testingData = np.array([axis1, axis3, axis4, axis5, axis6, press1, press2, press3, press4])

    testingFeature = np.zeros((testingData.shape[1], 1))
    # Vectorization
    for x in testingData:
        testingFeature = np.insert(testingFeature, testingFeature.shape[1], Vectorize(x), axis=1)

    testingFeature = np.delete(testingFeature, 0, axis=1)

    # Envelope
    for idx in range(9):
        tmp = []
        for i in range(4):
            tmp.extend(dataPool[i][idx].tolist())

        envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(tmp):(idx+1)*len(tmp)]), tmp, testingData[idx].tolist(), 1))
        testingFeature = np.insert(testingFeature, testingFeature.shape[1], envelopeResult.T, axis=1)

    # Max-min Normalize
    testingFeature = (testingFeature-scaleMin)/scaleRange

    return testingFeature
Exemplo n.º 4
0
def TrainingModel(dataPool, trainingLabel):
    labels = []

    # The flag of current person
    i = 0
    # Create a feature for each one class
    features = np.zeros((1, 72))
    print features.shape

    for data in dataPool:
        # Use to concat all axies data
        tmp = np.zeros((data.shape[1], 1))
        # Create an envelope features
        for idx in range(6):
            training_sample = []
            map(lambda i: training_sample.extend(dataPool[i][idx].tolist()), xrange(4))
            # We have 4 labels, so we will get a vector which size is 12 for each axis
            envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(training_sample):(idx+1)*len(training_sample)]), training_sample, dataPool[i][idx], 1))

            tmp = np.insert(tmp, tmp.shape[1], envelopeResult.T, axis=1)

        tmp = np.delete(tmp, 0, axis=1)

        print tmp.shape

        features = np.insert(features, features.shape[0], tmp, axis=0)

        # Create testing lable
        labels.extend([i for _ in xrange(tmp.shape[0])])

        i = i+1
    # Remove the first row of zeros 
    features = np.delete(features, 0, axis=0)

    print np.array(features).shape, np.array(labels).shape

    model = Training(features, labels, c=10**-5)
    Evalidation(features, np.array(labels))
    '''
    # For saving the features
    for i in range(4):
        writeInFile(testingData[rangeOfData[i]:rangeOfData[i+1]], i)
    '''

    print model
    print "Finish"

    return model
Exemplo n.º 5
0
def DataRepresent(dataSet, trainingLabel):
    trainingFeatures = np.zeros((1, 252))
    # Vectorization
    CurrentGuy = 0
    for data in dataSet:
        vectorFeatures = np.zeros((data.shape[1], 1))
        # 9 axis
        for x in data:
            vectorFeatures = np.insert(vectorFeatures,
                                       vectorFeatures.shape[1],
                                       Vectorize(x),
                                       axis=1)

        # Envelope
        for idx in range(9):
            tmp = []
            for i in range(4):
                tmp.extend(dataSet[i][idx].tolist())

            envelopeResult = np.array(
                envelope(
                    np.array(trainingLabel[idx * len(tmp):(idx + 1) *
                                           len(tmp)]), tmp,
                    dataSet[CurrentGuy][idx], 1))
            vectorFeatures = np.insert(vectorFeatures,
                                       vectorFeatures.shape[1],
                                       envelopeResult.T,
                                       axis=1)

        vectorFeatures = np.delete(vectorFeatures, 0, axis=1)

        trainingFeatures = np.insert(trainingFeatures,
                                     trainingFeatures.shape[0], vectorFeatures,
                                     0)

        CurrentGuy += 1

    trainingFeatures = np.delete(trainingFeatures, 0, axis=0)

    return trainingFeatures
Exemplo n.º 6
0
def DataRepresent(dataPool, trainingLabel, rawdata):
    # Preprocessing
    temp_ind=rawdata[:,0]    
    temp_ind = temp_ind.reshape((len(temp_ind),1))
    result = np.hstack((temp_ind, dynamicRangeCheck(rawdata[:,1:7])))
    [axis1, axis2, axis3, axis4, axis5, axis6] = Preprocessing(result, maxLen=250, n=5)
    testingData = np.array([axis1, axis2, axis3, axis4, axis5, axis6])
    
    #print testingData

    testingFeature = np.zeros((testingData.shape[1], 1))

    # Envelope
    for idx in range(6):
        training_sample = []
        map(lambda i: training_sample.extend(dataPool[i][idx].tolist()), xrange(4))

        envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(training_sample):(idx+1)*len(training_sample)]), training_sample, testingData[idx].tolist(), 1))
        testingFeature = np.insert(testingFeature, testingFeature.shape[1], envelopeResult.T, axis=1)
    print testingFeature
    testingFeature = np.delete(testingFeature, 0, axis=1)

    return testingFeature
Exemplo n.º 7
0
def TrainingModel(trainingData, trainingLabel):
    #params = [[0.003200000, 0.000759375000], [0.0256000000, 0.0194619506835938], [0.000800000, 0.0656840835571289], [0.025600000, 0.0656840835571289]]
    #params =[[0.00320000000000000, 0.00864975585937500], [0.025600000000000000, 0.019461950683593], [0.000800000000000000, 0.05], [0.0512000000000000, 0.0656840835571289]]
    #params = [[0.0128000000000000, 0.00576650390625000], [0.000800000000000000, 0.0437893890380859], [0.000200000000000000, 0.0656840835571289], [0.0128000000000000, 0.000225000000000000]]
    
    #params = [[0.000200000000000000, 0.5], [0.0128000000000000, 0.5], [0.00320000000000000, 0.5], [0.00640000000000000,0.5]]
    #params = [[0.000200000000000000, 0.0229746337890625], [0.0128000000000000, 0.000637500000000000], [0.00320000000000000, 0.00113906250000000], [0.00640000000000000,0.00170859375000000]]
    #params = [[0.000200000000000000, 0.0001], [0.0128000000000000, 0.0001], [0.00320000000000000, 0.000113906250000000], [0.00640000000000000,0.000170859375000000]]
    
    #params = [[0.1868, 0.0225], [0.1868, 0.0759], [0.0830, 0.0506], [0.0830,0.01]]
    params = [[0.1868, 0.0506], [0.1245, 0.0759], [0.0554, 0.0759], [0.0830,0.0759]]
    
    features = []
    labels = []
    rangeOfData = [0]
    modelPool = []
    p_pool = []
    p_table = []
    LogRegPool = []

    # The flag of current person
    currentGuy = 0
    #print_flag = 0
    for data in trainingData:
        # Vectorization
        vectorFeature = np.zeros((data.shape[1], 1))
        # Combine vectorize features of all attribute. (Dimension = n * 153)
        for x in data:            #vectorized features
            #if print_flag==0:
            #    print Vectorize(x)
            #   print_flag=1
            vectorFeature = np.insert(vectorFeature, vectorFeature.shape[1], Vectorize(x), axis=1)
        vectorFeature = np.delete(vectorFeature, 0, axis=1)
        # Envelope
        for idx in range(len(trainingData[0])):    # for each axis
            tmp = []
            for i in range(len(trainingData)):    # for each label
                tmp.extend(trainingData[i][idx].tolist())

            envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(tmp):(idx+1)*len(tmp)]), tmp, trainingData[currentGuy][idx], 1))
            vectorFeature = np.insert(vectorFeature, vectorFeature.shape[1], envelopeResult.T, axis=1)
        if len(features)==0:
            features=np.zeros((1, vectorFeature.shape[1]))
        features = np.insert(features, features.shape[0], vectorFeature, 0)
        # Create testing lable
        labels.extend([currentGuy for _ in xrange(vectorFeature.shape[0])])
        
        currentGuy +=1
        rangeOfData.append(rangeOfData[len(rangeOfData)-1] + data.shape[1])

    features = np.delete(features, 0, axis=0)
    #for i in range(4):
    #    writeInFile(features[rangeOfData[i]:rangeOfData[i+1]], i)

    # Max-Min Normalize
    scaleRange = np.abs(np.max(features, 0) - np.min(features, 0))
    scaleMin = np.min(features, 0)

    # Max and Min is 0, avoiding to divide by zero
    scaleRange[scaleRange == 0] = 1
    features = (features - scaleMin)/scaleRange

    for i in range(len(trainingData)):
        # OverSampling
        label  = np.array([0 for _ in range(features.shape[0])])
        label[rangeOfData[i]:rangeOfData[i+1]] = 1
        # sample = OverSampling(np.insert(features, features.shape[1], label, axis=1))
        sample=features[rangeOfData[i]:rangeOfData[i+1]]
        # get predict values of training data
        model, p_val, p_vals = Training(sample, label, features, params[i])
        # Logistic Regression
        LogReg = LogisticRegression(C=1e-3)
        LogReg.fit(np.array(p_vals), label)

        p_pool.append(p_val)        #largest predict values
        p_table.append(p_vals)      #historical predict values
        modelPool.append(model)
        LogRegPool.append(LogReg)

    print "Finish"
    return modelPool, p_pool, p_table, features, labels, scaleRange, scaleMin, rangeOfData, LogRegPool
Exemplo n.º 8
0
def TrainingModel(dataPool, trainingLabel):
    #params = [[0.003200000, 0.000759375000], [0.0256000000, 0.0194619506835938], [0.000800000, 0.0656840835571289], [0.025600000, 0.0656840835571289]]
    #params =[[0.00320000000000000, 0.00864975585937500], [0.025600000000000000, 0.019461950683593], [0.000800000000000000, 0.05], [0.0512000000000000, 0.0656840835571289]]
    #params = [[0.0128000000000000, 0.00576650390625000], [0.000800000000000000, 0.0437893890380859], [0.000200000000000000, 0.0656840835571289], [0.0128000000000000, 0.000225000000000000]]
    params = [[0.000200000000000000, 0.0229746337890625], [0.0128000000000000, 0.000637500000000000], [0.00320000000000000, 0.00113906250000000], [0.00640000000000000,0.00170859375000000]]

    testingData = np.zeros((1, 252))
    testingLabel = []
    rangeOfData = [0]
    modelPool = []
    p_pool = []
    p_table = []
    LogRegPool = []

    # The flag of current person
    currentGuy = 0
    for data in dataPool:
        # Vectorization
        vectorFeature = np.zeros((data.shape[1], 1))
        # Combine vectorize features of all attribute. (Dimension = n * 153)
        for x in data:
            vectorFeature = np.insert(vectorFeature, vectorFeature.shape[1], Vectorize(x), axis=1)
        vectorFeature = np.delete(vectorFeature, 0, axis=1)
        # Envelope
        for idx in range(9):
            tmp = []
            for i in range(4):
                tmp.extend(dataPool[i][idx].tolist())

            envelopeResult = np.array(envelope(np.array(trainingLabel[idx*len(tmp):(idx+1)*len(tmp)]), tmp, dataPool[currentGuy][idx], 1))
            vectorFeature = np.insert(vectorFeature, vectorFeature.shape[1], envelopeResult.T, axis=1)

        # Create testing lable
        testingLabel.extend([currentGuy for _ in range(40)])
        testingData = np.insert(testingData, testingData.shape[0], vectorFeature, 0)

        currentGuy +=1
        rangeOfData.append(rangeOfData[len(rangeOfData)-1] + data.shape[1])

    testingData = np.delete(testingData, 0, axis=0)

    #for i in range(4):
    #    writeInFile(testingData[rangeOfData[i]:rangeOfData[i+1]], i)

    # Max-Min Normalize
    scaleRange = np.abs(np.max(testingData, 0) - np.min(testingData, 0))
    scaleMin = np.min(testingData, 0)
    # Max and Min is 0, avoiding to divide by zero
    scaleRange[scaleRange == 0] = 1
    testingData = (testingData - scaleMin)/scaleRange


    for i in range(len(dataPool)):
        # OverSampling
        label  = np.array([0 for _ in range(testingData.shape[0])])
        label[rangeOfData[i]:rangeOfData[i+1]] = 1
        sample = OverSampling(np.insert(testingData, testingData.shape[1], label, axis=1))
        model, p_val, p_vals = Training(testingData[rangeOfData[i]:rangeOfData[i+1]], sample, params[i])
        # Logistic Regression
        LogReg = LogisticRegression(C=1e3)
        LogReg.fit(np.array(p_vals), sample[:, -1])

        p_pool.append(p_val)
        p_table.append(p_vals)
        modelPool.append(model)
        LogRegPool.append(LogReg)

    print "Finish"
    return modelPool, p_pool, p_table, testingData, testingLabel, scaleRange, scaleMin, rangeOfData, LogRegPool