Exemplo n.º 1
0
    def __init__(self,
                 ground_truth_filename=None,
                 proposal_filename=None,
                 ground_truth_fields=GROUND_TRUTH_FIELDS,
                 proposal_fields=PROPOSAL_FIELDS,
                 tiou_thresholds=np.linspace(0.5, 0.95, 10),
                 max_avg_nr_proposals=None,
                 subset='validation',
                 verbose=False,
                 check_status=False):
        if not ground_truth_filename:
            raise IOError('Please input a valid ground truth file.')
        if not proposal_filename:
            raise IOError('Please input a valid proposal file.')
        self.subset = subset
        self.tiou_thresholds = tiou_thresholds
        self.max_avg_nr_proposals = max_avg_nr_proposals
        self.verbose = verbose
        self.gt_fields = ground_truth_fields
        self.pred_fields = proposal_fields
        self.recall = None
        self.avg_recall = None
        self.proposals_per_video = None
        self.check_status = check_status
        # Retrieve blocked videos from server.
        if self.check_status:
            self.blocked_videos = get_blocked_videos()
        else:
            self.blocked_videos = list()
        # Import ground truth and proposals.
        self.ground_truth, self.activity_index = self._import_ground_truth(
            ground_truth_filename)
        self.proposal = self._import_proposal(proposal_filename)

        if self.verbose:
            print('[INIT] Loaded annotations from {} subset.'.format(subset))
            nr_gt = len(self.ground_truth)
            print('\tNumber of ground truth instances: {}'.format(nr_gt))
            nr_pred = len(self.proposal)
            print('\tNumber of proposals: {}'.format(nr_pred))
            print('\tFixed threshold for tiou score: {}'.format(
                self.tiou_thresholds))
Exemplo n.º 2
0
    def __init__(self,
                 ground_truth_filename=None,
                 prediction_filename=None,
                 ground_truth_fields=GROUND_TRUTH_FIELDS,
                 prediction_fields=PREDICTION_FIELDS,
                 tiou_thresholds=np.linspace(0.5, 0.95, 10),
                 subset='validation',
                 verbose=False,
                 check_status=True):
        if not ground_truth_filename:
            raise IOError('Please input a valid ground truth file.')
        if not prediction_filename:
            raise IOError('Please input a valid prediction file.')
        self.subset = subset
        self.tiou_thresholds = tiou_thresholds
        self.verbose = verbose
        self.gt_fields = ground_truth_fields
        self.pred_fields = prediction_fields
        self.ap = None
        self.check_status = check_status
        # Retrieve blocked videos from server.
        # TODO: we can filter the blocked_videos for validation and test dataset,
        #  improve efficiency
        if self.check_status:
            self.blocked_videos = get_blocked_videos()
        else:
            self.blocked_videos = list()
        # Import ground truth and predictions.
        self.ground_truth, self.activity_index = self._import_ground_truth(
            ground_truth_filename)
        self.prediction = self._import_prediction(prediction_filename)

        if self.verbose:
            print('[INIT] Loaded annotations from {} subset.'.format(subset))
            nr_gt = len(self.ground_truth)
            print('\tNumber of ground truth instances: {}'.format(nr_gt))
            nr_pred = len(self.prediction)
            print('\tNumber of predictions: {}'.format(nr_pred))
            print('\tFixed threshold for tiou score: {}'.format(
                self.tiou_thresholds))