def test_unfeasible_counter(): from EvoDAG import RGP gp = RGP(generations=np.inf, tournament_size=2, early_stopping_rounds=-1, seed=0, popsize=100) assert gp._unfeasible_counter == 0 assert gp.unfeasible_offspring() is None assert gp._unfeasible_counter == 1
def test_unfeasible_counter(): from EvoDAG import RGP gp = RGP(generations=np.inf, tournament_size=2, early_stopping_rounds=-1, classifier=False, seed=0, popsize=100) assert gp._unfeasible_counter == 0 assert gp.unfeasible_offspring() is None assert gp._unfeasible_counter == 1
def test_add(): from EvoDAG import RGP gp = RGP(generations=np.inf, tournament_size=2, early_stopping_rounds=-1, seed=0, popsize=3) gp.X = X y = cl.copy() mask = y == 0 y[mask] = 1 y[~mask] = -1 gp.y = y gp.create_population() gp.unfeasible_offspring() es = gp.population.estopping for i in range(10): n = gp.random_offspring() if n.fitness_vs > es.fitness_vs: break gp.add(n) assert gp._unfeasible_counter == 0
def test_time_limit(): from EvoDAG import RGP import time y = cl.copy() t = time.time() gp = RGP(generations=np.inf, tournament_size=2, early_stopping_rounds=100, multiple_outputs=True, time_limit=0.9, seed=0, popsize=10000).fit(X, y, test_set=X) t2 = time.time() print(t2 - t) assert t2 - t < 1 assert gp._time_limit == 0.9
def test_add(): from EvoDAG import RGP gp = RGP(generations=np.inf, tournament_size=2, early_stopping_rounds=-1, classifier=False, seed=0, popsize=3) gp.X = X y = cl.copy() mask = y == 0 y[mask] = 1 y[~mask] = -1 gp.y = y gp.create_population() gp.unfeasible_offspring() es = gp.population.estopping for i in range(20): n = gp.random_offspring() if n.fitness_vs > es.fitness_vs: break gp.population.add(n) print(gp._unfeasible_counter) assert gp._unfeasible_counter == 0
def test_model_len(): from EvoDAG import RGP rgp = RGP(popsize=5).fit(X, cl) m = rgp.model() print(len(m))
def test_model_iter(): from EvoDAG import RGP rgp = RGP(popsize=5).fit(X, cl) m = rgp.model() x = [x for x in m] print(x)