Exemplo n.º 1
0
def create_problem_node2(nargs=4, seed=0):
    from EvoDAG import RootGP
    gp = RootGP(generations=1, popsize=nargs, multiple_outputs=True, seed=seed)
    gp.X = X
    gp.Xtest = X
    y = cl.copy()
    gp.nclasses(y)
    gp.y = y
    return gp, [gp.X[x] for x in range(nargs)]
Exemplo n.º 2
0
def test_classification_y():
    from EvoDAG import RootGP
    gp = RootGP(generations=1, multiple_outputs=True, popsize=4)
    assert gp._classifier
    gp.X = X
    y = cl.copy()
    gp.nclasses(y)
    gp.y = y
    print(gp._ytr, gp.y)
    for a, b in zip(gp._ytr, gp.y):
        assert a.SSE(b) > 0
        assert a.sum() == 0
        assert b.sum() < 0
Exemplo n.º 3
0
def create_problem_node2(nargs=4, seed=0):
    from EvoDAG import RootGP
    from test_root import X, cl
    import numpy as np
    gp = RootGP(generations=1, popsize=nargs, multiple_outputs=True, seed=seed)
    X1 = np.concatenate((X, np.atleast_2d(np.zeros(X.shape[0])).T), axis=1)
    for i in range(10, 20):
        X1[i, -1] = 1
    gp.X = X1
    gp.Xtest = X1
    y = cl.copy()
    gp.nclasses(y)
    gp.y = y
    return gp, [gp.X[x] for x in range(nargs)]
Exemplo n.º 4
0
def test_BER():
    from EvoDAG.node import Add
    from EvoDAG import RootGP
    from EvoDAG.utils import BER
    gp = RootGP(generations=1, popsize=4, multiple_outputs=True)
    assert gp._classifier
    gp.X = X
    y = cl.copy()
    gp.nclasses(y)
    gp.y = y
    m = np.sign(tonparray(gp._mask_ts)).astype(np.bool)
    v = gp.random_leaf()
    v1 = gp.random_leaf()
    v1 = gp.random_leaf()
    a = Add([0, 1], ytr=gp._ytr, mask=gp._mask)
    a.eval([v, v1])
    hy = SparseArray.argmax(a.hy)
    b = BER(y[m], tonparray(hy)[m])
    gp._bagging_fitness.fitness(a)
    print(b, a.fitness * 100)
    assert_almost_equals(b, -a.fitness * 100)