Exemplo n.º 1
0
    def test1a(self):
        print("====test1a============================")
        nn = 100
        x = numpy.zeros(nn, dtype=float)
        ym = 0.2 + 0.5 * x
        nf = 1.0
        nf = 0.1
        numpy.random.seed(2345)
        noise = numpy.random.randn(nn)

        y = ym + nf * noise
        limits = [-20, 20]

        pm = PolynomialModel(0)
        bf = Fitter(x, pm)

        pars = bf.fit(y)
        logz0 = bf.getLogZ(limits=limits)
        logl0 = bf.logLikelihood
        print("pars  ", fmt(pars))
        print("stdv  ", fmt(bf.stdevs))
        print("logZ  ", fmt(logz0), "   logl  ", fmt(logl0))

        errdis = GaussErrorDistribution()
        problem = ClassicProblem(pm, xdata=x, ydata=y)
        logz1, maxll = plotErrdis(errdis,
                                  problem,
                                  limits=limits,
                                  max=0,
                                  plot=self.doplot)

        print("logZ  ", fmt(logz1))

        model = PolynomialModel(0)
        model.setLimits(lowLimits=limits[0], highLimits=limits[1])
        ns = NestedSampler(x, model, y, verbose=0)

        logE = ns.sample()

        par2 = ns.parameters
        stdv = ns.stdevs
        logz2 = ns.logZ
        dlz2 = ns.logZprecision
        print("pars  ", fmt(par2))
        print("stdv  ", fmt(stdv))
        print("logZ  ", fmt(logz2), " +- ", fmt(dlz2))

        self.assertTrue(abs(logz2 - logz0) < 2 * dlz2)

        samples = ns.samples
        parevo = samples.getParameterEvolution()
        llevo = samples.getLogLikelihoodEvolution()
        lwevo = samples.getLogWeightEvolution()

        assertAAE(numpy.sum(numpy.exp(lwevo)), 1.0)
Exemplo n.º 2
0
    def test6_0(self):
        print("====test6_0  Laplace ================")
        plot = self.doplot

        nn = 20
        x = numpy.linspace(0, 2, nn, dtype=float)
        ym = 0.3 + 0.0 * x
        nf = 0.9
        numpy.random.seed(2345)
        noise = numpy.random.laplace(size=nn)

        y = ym + nf * noise
        limits = [-1, 2]

        if plot:
            plt.plot(x, ym, 'k-')
            plt.plot(x, y, 'r.')

        model = PolynomialModel(0)
        model.setLimits(lowLimits=limits[0], highLimits=limits[1])

        bf = PowellFitter(x, model, errdis="laplace")

        pars = bf.fit(y, tolerance=1e-20)
        print("pars  ", pars)
        print("stdv  ", fmt(bf.stdevs))
        logz0 = bf.getLogZ(limits=limits)
        logl0 = bf.logLikelihood
        print("logZ  ", fmt(logz0), "   logL  ", fmt(logl0))

        errdis = LaplaceErrorDistribution(scale=nf)
        problem = ClassicProblem(model, xdata=x, ydata=y)
        logz1, logl1 = plotErrdis(errdis,
                                  problem,
                                  limits=limits,
                                  max=0,
                                  plot=plot)
        if plot:
            plt.plot(pars[0], logl1, 'k.')

        print("logZ  ", fmt(logz1), "   logL  ", fmt(logl1))

        model = PolynomialModel(0)
        model.setLimits(lowLimits=limits[0], highLimits=limits[1])
        ns = NestedSampler(x, model, y, distribution='laplace', verbose=0)

        logE = ns.sample()

        par2 = ns.parameters
        stdv = ns.stdevs
        logE = ns.logZ
        dlz2 = ns.logZprecision
        logz2 = ns.logZ
        print("pars  ", fmt(par2))
        print("stdv  ", fmt(stdv))
        print("logZ  ", fmt(logz2), " +- ", fmt(dlz2))

        #        self.assertTrue( abs( logz2 - logz0 ) < dlz2 )
        print(logz1 - logz2)

        samples = ns.samples
        parevo = samples.getParameterEvolution()
        llevo = samples.getLogLikelihoodEvolution()
        lwevo = samples.getLogWeightEvolution()

        assertAAE(numpy.sum(numpy.exp(lwevo)), 1.0)

        if plot:
            plt.plot(parevo, numpy.exp(llevo), 'r,')

            mxl = numpy.exp(numpy.max(llevo)) * 1.2
            plt.plot([pars, pars], [0.0, mxl], 'b-')
            plt.plot([par2, par2], [0.0, mxl], 'r-')
            plt.plot([par2, par2] + stdv, [0.0, mxl], 'g-')
            plt.plot([par2, par2] - stdv, [0.0, mxl], 'g-')

            plt.show()
Exemplo n.º 3
0
    def test1( self, plot=False ) :
        print( "====test1============================" )
        nn = 100
        x = numpy.zeros( nn, dtype=float )
        ym = 0.2 + 0.5 * x
        nf = 1.0
        nf = 0.1
        numpy.random.seed( 2345 )
        noise = numpy.random.randn( nn )

        y = ym + nf * noise
        limits = [-2,2]

        pm = PolynomialModel( 0 )
        bf = Fitter( x, pm )

        pars = bf.fit( y )
        logz0 = bf.getLogZ( limits=limits )
        logl0 = bf.logLikelihood
        print( "pars  ", fmt( pars ) )
        print( "stdv  ", fmt( bf.stdevs ) )
        print( "logZ  ", fmt( logz0 ) )
        print( "logl  ", fmt( logl0 ) )

        errdis = GaussErrorDistribution ( x, y )

        logz1, maxll = plotErrdis( errdis, pm, limits=limits,
                                    max=0, plot=plot )

        print( "logZ  ", fmt( logz1 ) )

        model = PolynomialModel( 0 )
        model.setLimits( lowLimits=limits[0], highLimits=limits[1] )
        ns = NestedSampler( x, model, y )

        yfit = ns.sample()

        par2 = ns.parameters
        stdv = ns.stdevs
        logz2 = ns.logZ
        dlz2 = ns.logZprecision
        print( "pars  ", fmt( par2 ) )
        print( "stdv  ", fmt( stdv ) )
        print( "logZ  ", fmt( logz2 ), " +- ", fmt( dlz2 ) )

        self.assertTrue( abs( logz2 - logz0 ) < dlz2 )

        samples = ns.samples
        parevo =samples.getParameterEvolution()
        llevo = samples.getLogLikelihoodEvolution()
        lwevo = samples.getLogWeightEvolution()

        assertAAE( numpy.sum( numpy.exp( lwevo ) ), 1.0 )

        if plot :
            plt.plot( parevo, numpy.exp( llevo ), 'r,' )

            mxl = numpy.exp( numpy.max( llevo ) ) * 1.2
            plt.plot( [pars,pars], [0.0,mxl], 'b-' )
            plt.plot( [par2,par2], [0.0,mxl], 'r-' )
            plt.plot( [par2,par2]+stdv, [0.0,mxl], 'g-' )
            plt.plot( [par2,par2]-stdv, [0.0,mxl], 'g-' )

            plt.show()