Exemplo n.º 1
0
def reason_func(resource_name):
    famNs = Namespace('file:///code/ganglia/metric.n3#')
    nsMapping = {'mtc': famNs}
    rules = HornFromN3('ganglia/metric/metric_rule.n3')
    factGraph = Graph().parse('ganglia/metric/metric.n3', format='n3')
    factGraph.bind('mtc', famNs)
    dPreds = [famNs.relateTo]

    topDownStore = TopDownSPARQLEntailingStore(factGraph.store,
                                               factGraph,
                                               idb=rules,
                                               derivedPredicates=dPreds,
                                               nsBindings=nsMapping)
    targetGraph = Graph(topDownStore)
    targetGraph.bind('ex', famNs)
    #get list of the related resource
    r_list = list(
        targetGraph.query('SELECT ?RELATETO { mtc:%s mtc:relateTo ?RELATETO}' %
                          resource_name,
                          initNs=nsMapping))

    res_list = []
    for res in r_list:
        res_list.append(str(res).split("#")[1])
    return res_list
Exemplo n.º 2
0
 def testQueryMemoization(self):
     raise SkipTest(
         "SKIPFAIL testQueryMemoization, see test/testBFPQueryMemoization.py"
     )
     topDownStore = TopDownSPARQLEntailingStore(
         self.owlGraph.store,
         self.owlGraph,
         idb=self.program,
         DEBUG=False,
         nsBindings=nsMap,
         decisionProcedure=BFP_METHOD,
         identifyHybridPredicates=True)
     targetGraph = Graph(topDownStore)
     for pref, nsUri in nsMap.items():
         targetGraph.bind(pref, nsUri)
     goal = (Variable('SUBJECT'), RDF.type, EX.C)
     queryLiteral = EDBQuery([BuildUnitermFromTuple(goal)], self.owlGraph,
                             [Variable('SUBJECT')])
     query = queryLiteral.asSPARQL()
     # rt=targetGraph.query(query,initNs=nsMap)
     # if len(topDownStore.edbQueries) == len(set(topDownStore.edbQueries)):
     #     pprint(topDownStore.edbQueries)
     print("Queries dispatched against EDB")
     for query in self.owlGraph.queriesDispatched:
         print(query)
     self.failUnlessEqual(len(self.owlGraph.queriesDispatched), 4,
                          "Duplicate query")
Exemplo n.º 3
0
 def testTransitivity(self):
     nsBindings={u'owl':OWL_NS,u'ex':EX}
     topDownStore=TopDownSPARQLEntailingStore(
                     self.graph.store,
                     self.graph,
                     idb=HornFromN3(StringIO(RULES)),
                     DEBUG=True,
                     derivedPredicates = [OWL_NS.sameAs],
                     nsBindings=nsBindings,
                     hybridPredicates = [OWL_NS.sameAs])
     targetGraph = Graph(topDownStore)
     for query,solns in QUERIES.items():
         result = set(targetGraph.query(query,initNs=nsBindings))
         print query,result
         self.failUnless(not solns.difference(result))
Exemplo n.º 4
0
 def setUp(self):
     self.famNs = Namespace('http://dev.w3.org/2000/10/swap/test/cwm/fam.n3#')
     self.nsMapping = dict(fam=self.famNs)
     # self.rules = HornFromN3('http://dev.w3.org/2000/10/swap/test/cwm/fam-rules.n3')
     self.rules = HornFromN3(StringIO(rules))
     # self.factGraph = Graph().parse(
     #     'http://dev.w3.org/2000/10/swap/test/cwm/fam.n3', format='n3')
     self.factGraph = Graph().parse(StringIO(facts), format='n3')
     self.factGraph.bind('fam', self.famNs)
     self.factGraph.bind('', self.famNs)
     dPreds = [self.famNs.ancestor]
     self.topDownStore = TopDownSPARQLEntailingStore(
         self.factGraph.store,
         self.factGraph,
         idb=self.rules,
         derivedPredicates=dPreds,
         nsBindings=self.nsMapping)
Exemplo n.º 5
0
def WhichSubsumptionOperand(term, owlGraph):
    topDownStore = TopDownSPARQLEntailingStore(
        owlGraph.store,
        owlGraph,
        idb=HornFromN3(StringIO(SUBSUMPTION_SEMANTICS)),
        DEBUG=False,
        derivedPredicates=[OWL_NS.sameAs],
        hybridPredicates=[OWL_NS.sameAs])
    targetGraph = Graph(topDownStore)
    appearsLeft = targetGraph.query("ASK { <%s> rdfs:subClassOf [] } ",
                                    initNs={u'rdfs': RDFS})
    appearsRight = targetGraph.query("ASK { [] rdfs:subClassOf <%s> } ",
                                     initNs={u'rdfs': RDFS})
    if appearsLeft and appearsRight:
        return BOTH_SUBSUMPTION_OPERAND
    elif appearsLeft:
        return LEFT_SUBSUMPTION_OPERAND
    else:
        return RIGHT_SUBSUMPTION_OPERAND
Exemplo n.º 6
0
def main():
    from optparse import OptionParser
    op = OptionParser(
        'usage: %prog [options] factFile1 factFile2 ... factFileN')

    op.add_option(
        '--why',
        default=None,
        help='Specifies the goals to solve for using the non-naive methods' +
        'see --method')

    op.add_option(
        '--closure',
        action='store_true',
        default=False,
        help='Whether or not to serialize the inferred triples' +
        ' along with the original triples.  Otherwise ' +
        '(the default behavior), serialize only the inferred triples')

    op.add_option(
        '--imports',
        action='store_true',
        default=False,
        help='Whether or not to follow owl:imports in the fact graph')

    op.add_option(
        '--output',
        default='n3',
        metavar='RDF_FORMAT',
        choices=[
            'xml', 'TriX', 'n3', 'pml', 'proof-graph', 'nt', 'rif', 'rif-xml',
            'conflict', 'man-owl'
        ],
        help=
        "Serialize the inferred triples and/or original RDF triples to STDOUT "
        +
        "using the specified RDF syntax ('xml', 'pretty-xml', 'nt', 'turtle', "
        +
        "or 'n3') or to print a summary of the conflict set (from the RETE " +
        "network) if the value of this option is 'conflict'.  If the the " +
        " value is 'rif' or 'rif-xml', Then the rules used for inference " +
        "will be serialized as RIF.  If the value is 'pml' and --why is used, "
        + " then the PML RDF statements are serialized.  If output is " +
        "'proof-graph then a graphviz .dot file of the proof graph is printed. "
        +
        "Finally if the value is 'man-owl', then the RDF facts are assumed " +
        "to be OWL/RDF and serialized via Manchester OWL syntax. The default is %default"
    )

    op.add_option(
        '--class',
        dest='classes',
        action='append',
        default=[],
        metavar='QNAME',
        help='Used with --output=man-owl to determine which ' +
        'classes within the entire OWL/RDF are targetted for serialization' +
        '.  Can be used more than once')

    op.add_option(
        '--hybrid',
        action='store_true',
        default=False,
        help='Used with with --method=bfp to determine whether or not to ' +
        'peek into the fact graph to identify predicates that are both ' +
        'derived and base.  This is expensive for large fact graphs' +
        'and is explicitely not used against SPARQL endpoints')

    op.add_option(
        '--property',
        action='append',
        dest='properties',
        default=[],
        metavar='QNAME',
        help='Used with --output=man-owl or --extract to determine which ' +
        'properties are serialized / extracted.  Can be used more than once')

    op.add_option(
        '--normalize',
        action='store_true',
        default=False,
        help=
        "Used with --output=man-owl to attempt to determine if the ontology is 'normalized' [Rector, A. 2003]"
        + "The default is %default")

    op.add_option(
        '--ddlGraph',
        default=False,
        help=
        "The location of a N3 Data Description document describing the IDB predicates"
    )

    op.add_option(
        '--input-format',
        default='xml',
        dest='inputFormat',
        metavar='RDF_FORMAT',
        choices=['xml', 'trix', 'n3', 'nt', 'rdfa'],
        help=
        "The format of the RDF document(s) which serve as the initial facts " +
        " for the RETE network. One of 'xml', 'n3', 'trix', 'nt', " +
        "or 'rdfa'.  The default is %default")

    op.add_option(
        '--safety',
        default='none',
        metavar='RULE_SAFETY',
        choices=['loose', 'strict', 'none'],
        help="Determines how to handle RIF Core safety.  A value of 'loose' " +
        " means that unsafe rules will be ignored.  A value of 'strict' " +
        " will cause a syntax exception upon any unsafe rule.  A value of " +
        "'none' (the default) does nothing")

    op.add_option(
        '--pDSemantics',
        action='store_true',
        default=False,
        help=
        'Used with --dlp to add pD semantics ruleset for semantics not covered '
        + 'by DLP but can be expressed in definite Datalog Logic Programming' +
        ' The default is %default')

    op.add_option(
        '--stdin',
        action='store_true',
        default=False,
        help=
        'Parse STDIN as an RDF graph to contribute to the initial facts. The default is %default '
    )

    op.add_option(
        '--ns',
        action='append',
        default=[],
        metavar="PREFIX=URI",
        help='Register a namespace binding (QName prefix to a base URI).  This '
        + 'can be used more than once')

    op.add_option(
        '--rules',
        default=[],
        action='append',
        metavar='PATH_OR_URI',
        help='The Notation 3 documents to use as rulesets for the RETE network'
        + '.  Can be specified more than once')

    op.add_option('-d',
                  '--debug',
                  action='store_true',
                  default=True,
                  help='Include debugging output')

    op.add_option(
        '--strictness',
        default='defaultBase',
        metavar='DDL_STRICTNESS',
        choices=['loose', 'defaultBase', 'defaultDerived', 'harsh'],
        help=
        'Used with --why to specify whether to: *not* check if predicates are '
        +
        ' both derived and base (loose), if they are, mark as derived (defaultDerived) '
        +
        'or as base (defaultBase) predicates, else raise an exception (harsh)')

    op.add_option(
        '--method',
        default='naive',
        metavar='reasoning algorithm',
        choices=['gms', 'bfp', 'naive'],
        help='Used with --why to specify how to evaluate answers for query.  '
        + 'One of: gms, sld, bfp, naive')

    op.add_option(
        '--firstAnswer',
        default=False,
        action='store_true',
        help=
        'Used with --why to determine whether to fetch all answers or just ' +
        'the first')

    op.add_option(
        '--edb',
        default=[],
        action='append',
        metavar='EXTENSIONAL_DB_PREDICATE_QNAME',
        help=
        'Used with --why/--strictness=defaultDerived to specify which clashing '
        + 'predicate will be designated as a base predicate')

    op.add_option(
        '--idb',
        default=[],
        action='append',
        metavar='INTENSIONAL_DB_PREDICATE_QNAME',
        help=
        'Used with --why/--strictness=defaultBase to specify which clashing ' +
        'predicate will be designated as a derived predicate')

    op.add_option(
        '--hybridPredicate',
        default=[],
        action='append',
        metavar='PREDICATE_QNAME',
        help=
        'Used with --why to explicitely specify a hybrid predicate (in both ' +
        ' IDB and EDB) ')

    op.add_option(
        '--noMagic',
        default=[],
        action='append',
        metavar='DB_PREDICATE_QNAME',
        help='Used with --why to specify that the predicate shouldnt have its '
        + 'magic sets calculated')

    op.add_option(
        '--filter',
        action='append',
        default=[],
        metavar='PATH_OR_URI',
        help=
        'The Notation 3 documents to use as a filter (entailments do not particpate in network)'
    )

    op.add_option(
        '--ruleFacts',
        action='store_true',
        default=False,
        help="Determines whether or not to attempt to parse initial facts from "
        + "the rule graph.  The default is %default")

    op.add_option(
        '--builtins',
        default=False,
        metavar='PATH_TO_PYTHON_MODULE',
        help="The path to a python module with function definitions (and a " +
        "dicitonary called ADDITIONAL_FILTERS) to use for builtins implementations"
    )

    op.add_option(
        '--dlp',
        action='store_true',
        default=False,
        help=
        'Use Description Logic Programming (DLP) to extract rules from OWL/RDF.  The default is %default'
    )

    op.add_option(
        '--sparqlEndpoint',
        action='store_true',
        default=False,
        help=
        'Indicates that the sole argument is the URI of a SPARQL endpoint to query'
    )

    op.add_option(
        '--ontology',
        action='append',
        default=[],
        metavar='PATH_OR_URI',
        help=
        'The path to an OWL RDF/XML graph to use DLP to extract rules from ' +
        '(other wise, fact graph(s) are used)  ')

    op.add_option(
        '--ontologyFormat',
        default='xml',
        dest='ontologyFormat',
        metavar='RDF_FORMAT',
        choices=['xml', 'trix', 'n3', 'nt', 'rdfa'],
        help=
        "The format of the OWL RDF/XML graph specified via --ontology.  The default is %default"
    )

    op.add_option(
        '--builtinTemplates',
        default=None,
        metavar='N3_DOC_PATH_OR_URI',
        help=
        'The path to an N3 document associating SPARQL FILTER templates to ' +
        'rule builtins')

    op.add_option('--negation',
                  action='store_true',
                  default=False,
                  help='Extract negative rules?')

    op.add_option(
        '--normalForm',
        action='store_true',
        default=False,
        help='Whether or not to reduce DL axioms & LP rules to a normal form')
    (options, facts) = op.parse_args()

    nsBinds = {'iw': 'http://inferenceweb.stanford.edu/2004/07/iw.owl#'}
    for nsBind in options.ns:
        pref, nsUri = nsBind.split('=')
        nsBinds[pref] = nsUri

    namespace_manager = NamespaceManager(Graph())
    if options.sparqlEndpoint:
        factGraph = Graph(plugin.get('SPARQLStore', Store)(facts[0]))
        options.hybrid = False
    else:
        factGraph = Graph()
    ruleSet = Ruleset()

    for fileN in options.rules:
        if options.ruleFacts and not options.sparqlEndpoint:
            factGraph.parse(fileN, format='n3')
            print("Parsing RDF facts from ", fileN)
        if options.builtins:
            import imp
            userFuncs = imp.load_source('builtins', options.builtins)
            rs = HornFromN3(fileN,
                            additionalBuiltins=userFuncs.ADDITIONAL_FILTERS)
        else:
            rs = HornFromN3(fileN)
        nsBinds.update(rs.nsMapping)
        ruleSet.formulae.extend(rs)
        #ruleGraph.parse(fileN, format='n3')

    ruleSet.nsMapping = nsBinds

    for prefix, uri in list(nsBinds.items()):
        namespace_manager.bind(prefix, uri, override=False)
    closureDeltaGraph = Graph()
    closureDeltaGraph.namespace_manager = namespace_manager
    factGraph.namespace_manager = namespace_manager

    if not options.sparqlEndpoint:
        for fileN in facts:
            factGraph.parse(fileN, format=options.inputFormat)
            if options.imports:
                for owlImport in factGraph.objects(predicate=OWL_NS.imports):
                    factGraph.parse(owlImport)
                    print("Parsed Semantic Web Graph.. ", owlImport)

    if not options.sparqlEndpoint and facts:
        for pref, uri in factGraph.namespaces():
            nsBinds[pref] = uri

    if options.stdin:
        assert not options.sparqlEndpoint, "Cannot use --stdin with --sparqlEndpoint"
        factGraph.parse(sys.stdin, format=options.inputFormat)

    #Normalize namespace mappings
    #prune redundant, rdflib-allocated namespace prefix mappings
    newNsMgr = NamespaceManager(factGraph)
    from FuXi.Rete.Util import CollapseDictionary
    for k, v in list(
            CollapseDictionary(
                dict([(k, v) for k, v in factGraph.namespaces()])).items()):
        newNsMgr.bind(k, v)
    factGraph.namespace_manager = newNsMgr

    if options.normalForm:
        NormalFormReduction(factGraph)

    if not options.sparqlEndpoint:
        workingMemory = generateTokenSet(factGraph)
    if options.builtins:
        import imp
        userFuncs = imp.load_source('builtins', options.builtins)
        rule_store, rule_graph, network = SetupRuleStore(
            makeNetwork=True, additionalBuiltins=userFuncs.ADDITIONAL_FILTERS)
    else:
        rule_store, rule_graph, network = SetupRuleStore(makeNetwork=True)
    network.inferredFacts = closureDeltaGraph
    network.nsMap = nsBinds

    if options.dlp:
        from FuXi.DLP.DLNormalization import NormalFormReduction
        if options.ontology:
            ontGraph = Graph()
            for fileN in options.ontology:
                ontGraph.parse(fileN, format=options.ontologyFormat)
                for prefix, uri in ontGraph.namespaces():
                    nsBinds[prefix] = uri
                    namespace_manager.bind(prefix, uri, override=False)
                    if options.sparqlEndpoint:
                        factGraph.store.bind(prefix, uri)
        else:
            ontGraph = factGraph
        NormalFormReduction(ontGraph)
        dlp = network.setupDescriptionLogicProgramming(
            ontGraph,
            addPDSemantics=options.pDSemantics,
            constructNetwork=False,
            ignoreNegativeStratus=options.negation,
            safety=safetyNameMap[options.safety])
        ruleSet.formulae.extend(dlp)
    if options.output == 'rif' and not options.why:
        for rule in ruleSet:
            print(rule)
        if options.negation:
            for nRule in network.negRules:
                print(nRule)

    elif options.output == 'man-owl':
        cGraph = network.closureGraph(factGraph, readOnly=False)
        cGraph.namespace_manager = namespace_manager
        Individual.factoryGraph = cGraph
        if options.classes:
            mapping = dict(namespace_manager.namespaces())
            for c in options.classes:
                pref, uri = c.split(':')
                print(Class(URIRef(mapping[pref] + uri)).__repr__(True))
        elif options.properties:
            mapping = dict(namespace_manager.namespaces())
            for p in options.properties:
                pref, uri = p.split(':')
                print(Property(URIRef(mapping[pref] + uri)))
        else:
            for p in AllProperties(cGraph):
                print(p.identifier, first(p.label))
                print(repr(p))
            for c in AllClasses(cGraph):
                if options.normalize:
                    if c.isPrimitive():
                        primAnc = [
                            sc for sc in c.subClassOf if sc.isPrimitive()
                        ]
                        if len(primAnc) > 1:
                            warnings.warn(
                                "Branches of primitive skeleton taxonomy" +
                                " should form trees: %s has %s primitive parents: %s"
                                % (c.qname, len(primAnc), primAnc),
                                UserWarning, 1)
                        children = [desc for desc in c.subSumpteeIds()]
                        for child in children:
                            for otherChild in [
                                    o for o in children if o is not child
                            ]:
                                if not otherChild in [
                                        c.identifier
                                        for c in Class(child).disjointWith
                                ]:  # and \
                                    warnings.warn(
                                        "Primitive children (of %s) " % (c.qname) + \
                                        "must be mutually disjoint: %s and %s" % (
                                    Class(child).qname, Class(otherChild).qname), UserWarning, 1)
                # if not isinstance(c.identifier, BNode):
                print(c.__repr__(True))

    if not options.why:
        # Naive construction of graph
        for rule in ruleSet:
            network.buildNetworkFromClause(rule)

    magicSeeds = []
    if options.why:
        builtinTemplateGraph = Graph()
        if options.builtinTemplates:
            builtinTemplateGraph = Graph().parse(options.builtinTemplates,
                                                 format='n3')
        factGraph.templateMap = \
            dict([(pred, template)
                      for pred, _ignore, template in
                            builtinTemplateGraph.triples(
                                (None,
                                 TEMPLATES.filterTemplate,
                                 None))])
        goals = []
        query = ParseSPARQL(options.why)
        network.nsMap['pml'] = PML
        network.nsMap['gmp'] = GMP_NS
        network.nsMap['owl'] = OWL_NS
        nsBinds.update(network.nsMap)
        network.nsMap = nsBinds
        if not query.prologue:
            query.prologue = Prologue(None, [])
            query.prologue.prefixBindings.update(nsBinds)
        else:
            for prefix, nsInst in list(nsBinds.items()):
                if prefix not in query.prologue.prefixBindings:
                    query.prologue.prefixBindings[prefix] = nsInst
        print("query.prologue", query.prologue)
        print("query.query", query.query)
        print("query.query.whereClause", query.query.whereClause)
        print("query.query.whereClause.parsedGraphPattern",
              query.query.whereClause.parsedGraphPattern)
        goals.extend([(s, p, o) for s, p, o, c in ReduceGraphPattern(
            query.query.whereClause.parsedGraphPattern,
            query.prologue).patterns])
        # dPreds=[]# p for s, p, o in goals ]
        # print("goals", goals)
        magicRuleNo = 0
        bottomUpDerivedPreds = []
        # topDownDerivedPreds  = []
        defaultBasePreds = []
        defaultDerivedPreds = set()
        hybridPredicates = []
        mapping = dict(newNsMgr.namespaces())
        for edb in options.edb:
            pref, uri = edb.split(':')
            defaultBasePreds.append(URIRef(mapping[pref] + uri))
        noMagic = []
        for pred in options.noMagic:
            pref, uri = pred.split(':')
            noMagic.append(URIRef(mapping[pref] + uri))
        if options.ddlGraph:
            ddlGraph = Graph().parse(options.ddlGraph, format='n3')
            # @TODO: should also get hybrid predicates from DDL graph
            defaultDerivedPreds = IdentifyDerivedPredicates(
                ddlGraph, Graph(), ruleSet)
        else:
            for idb in options.idb:
                pref, uri = idb.split(':')
                defaultDerivedPreds.add(URIRef(mapping[pref] + uri))
            defaultDerivedPreds.update(
                set([p == RDF.type and o or p for s, p, o in goals]))
            for hybrid in options.hybridPredicate:
                pref, uri = hybrid.split(':')
                hybridPredicates.append(URIRef(mapping[pref] + uri))

        if options.method == 'gms':
            for goal in goals:
                goalSeed = AdornLiteral(goal).makeMagicPred()
                print("Magic seed fact (used in bottom-up evaluation)",
                      goalSeed)
                magicSeeds.append(goalSeed.toRDFTuple())
            if noMagic:
                print("Predicates whose magic sets will not be calculated")
                for p in noMagic:
                    print("\t", factGraph.qname(p))
            for rule in MagicSetTransformation(
                    factGraph,
                    ruleSet,
                    goals,
                    derivedPreds=bottomUpDerivedPreds,
                    strictCheck=nameMap[options.strictness],
                    defaultPredicates=(defaultBasePreds, defaultDerivedPreds),
                    noMagic=noMagic):
                magicRuleNo += 1
                network.buildNetworkFromClause(rule)
            if len(list(ruleSet)):
                print("reduction in size of program: %s (%s -> %s clauses)" %
                      (100 -
                       (float(magicRuleNo) / float(len(list(ruleSet)))) * 100,
                       len(list(ruleSet)), magicRuleNo))
            start = time.time()
            network.feedFactsToAdd(generateTokenSet(magicSeeds))
            if not [
                    rule for rule in factGraph.adornedProgram if len(rule.sip)
            ]:
                warnings.warn(
                    "Using GMS sideways information strategy with no " +
                    "information to pass from query.  Falling back to " +
                    "naive method over given facts and rules")
                network.feedFactsToAdd(workingMemory)
            sTime = time.time() - start
            if sTime > 1:
                sTimeStr = "%s seconds" % sTime
            else:
                sTime = sTime * 1000
                sTimeStr = "%s milli seconds" % sTime
            print("Time to calculate closure on working memory: ", sTimeStr)

            if options.output == 'rif':
                print("Rules used for bottom-up evaluation")
                if network.rules:
                    for clause in network.rules:
                        print(clause)
                else:
                    for clause in factGraph.adornedProgram:
                        print(clause)
            if options.output == 'conflict':
                network.reportConflictSet()

        elif options.method == 'bfp':
            topDownDPreds = defaultDerivedPreds
            if options.builtinTemplates:
                builtinTemplateGraph = Graph().parse(options.builtinTemplates,
                                                     format='n3')
                builtinDict = dict([
                    (pred, template) for pred, _ignore, template in
                    builtinTemplateGraph.triples((None,
                                                  TEMPLATES.filterTemplate,
                                                  None))
                ])
            else:
                builtinDict = None
            topDownStore = TopDownSPARQLEntailingStore(
                factGraph.store,
                factGraph,
                idb=ruleSet,
                DEBUG=options.debug,
                derivedPredicates=topDownDPreds,
                templateMap=builtinDict,
                nsBindings=network.nsMap,
                identifyHybridPredicates=options.hybrid
                if options.method == 'bfp' else False,
                hybridPredicates=hybridPredicates)
            targetGraph = Graph(topDownStore)
            for pref, nsUri in list(network.nsMap.items()):
                targetGraph.bind(pref, nsUri)
            start = time.time()
            # queryLiteral = EDBQuery([BuildUnitermFromTuple(goal) for goal in goals],
            #                         targetGraph)
            # query = queryLiteral.asSPARQL()
            # print("Goal to solve ", query)
            sTime = time.time() - start
            result = targetGraph.query(options.why, initNs=network.nsMap)
            if result.askAnswer:
                sTime = time.time() - start
                if sTime > 1:
                    sTimeStr = "%s seconds" % sTime
                else:
                    sTime = sTime * 1000
                    sTimeStr = "%s milli seconds" % sTime
                print("Time to reach answer ground goal answer of %s: %s" %
                      (result.askAnswer[0], sTimeStr))
            else:
                for rt in result:
                    sTime = time.time() - start
                    if sTime > 1:
                        sTimeStr = "%s seconds" % sTime
                    else:
                        sTime = sTime * 1000
                        sTimeStr = "%s milli seconds" % sTime
                    if options.firstAnswer:
                        break
                    print(
                        "Time to reach answer %s via top-down SPARQL sip strategy: %s"
                        % (rt, sTimeStr))
            if options.output == 'conflict' and options.method == 'bfp':
                for _network, _goal in topDownStore.queryNetworks:
                    print(network, _goal)
                    _network.reportConflictSet(options.debug)
                for query in topDownStore.edbQueries:
                    print(query.asSPARQL())

    elif options.method == 'naive':
        start = time.time()
        network.feedFactsToAdd(workingMemory)
        sTime = time.time() - start
        if sTime > 1:
            sTimeStr = "%s seconds" % sTime
        else:
            sTime = sTime * 1000
            sTimeStr = "%s milli seconds" % sTime
        print("Time to calculate closure on working memory: ", sTimeStr)
        print(network)
        if options.output == 'conflict':
            network.reportConflictSet()

    for fileN in options.filter:
        for rule in HornFromN3(fileN):
            network.buildFilterNetworkFromClause(rule)

    if options.negation and network.negRules and options.method in [
            'both', 'bottomUp'
    ]:
        now = time.time()
        rt = network.calculateStratifiedModel(factGraph)
        print(
            "Time to calculate stratified, stable model (inferred %s facts): %s"
            % (rt, time.time() - now))
    if options.filter:
        print("Applying filter to entailed facts")
        network.inferredFacts = network.filteredFacts

    if options.closure and options.output in RDF_SERIALIZATION_FORMATS:
        cGraph = network.closureGraph(factGraph)
        cGraph.namespace_manager = namespace_manager
        print(
            cGraph.serialize(destination=None,
                             format=options.output,
                             base=None))
    elif options.output and options.output in RDF_SERIALIZATION_FORMATS:
        print(
            network.inferredFacts.serialize(destination=None,
                                            format=options.output,
                                            base=None))
Exemplo n.º 7
0
def main():
    g = Graph()
    Individual.factoryGraph = g
    g.bind('ex', EX_NS, override=False)

    isChildOf   = Property(EX_NS.isChildOf)
    isMarriedTo = Property(EX_NS.isMarriedTo)


    woman = Class(EX_NS.Woman)
    man   = Class(EX_NS.Man,
                  subClassOf=[isMarriedTo|only|woman],
                  # complementOf=woman
    )
    woman.subClassOf = [isMarriedTo|only|man]

    # Class(OWL_NS.Thing,subClassOf=[isMarriedTo|min|Literal(1)])

    man.extent = [EX_NS.John,EX_NS.Tim]
    woman.extent = [EX_NS.Kate,EX_NS.Mary]

    #Semantically equivalent to Abox assertion below
    # anon_cls1 = Class(
    #     subClassOf=[isMarriedTo|some|EnumeratedClass(members=[EX_NS.Mary])]
    # )
    # anon_cls1.extent = [EX_NS.John]
    g.add((EX_NS.John,isMarriedTo.identifier,EX_NS.Mary))

    #Semantically equivalent to Abox assertion below
    # anon_cls2 = Class(
    #     subClassOf=[isChildOf|some|EnumeratedClass(members=[EX_NS.John])]
    # )
    # anon_cls2.extent = [EX_NS.Kate]
    g.add((EX_NS.Kate,isChildOf.identifier,EX_NS.John))

    #Semantically equivalent to Abox assertion below
    # anon_cls3 = Class(
    #     subClassOf=[isChildOf|some|EnumeratedClass(members=[EX_NS.Mary])]
    # )
    # anon_cls3.extent = [EX_NS.Tim]
    g.add((EX_NS.Tim,isChildOf.identifier,EX_NS.Mary))

    print g.serialize(format='pretty-xml')

    rule_store, rule_graph, network = SetupRuleStore(makeNetwork=True)
    network.nsMap = { u'ex' : EX_NS }

    # NormalFormReduction(g)
    dlp=network.setupDescriptionLogicProgramming(
                             g,
                             addPDSemantics=False,
                             constructNetwork=False
    )
    for rule in dlp:
        print rule

    topDownStore=TopDownSPARQLEntailingStore(
                    g.store,
                    g,
                    idb=dlp,
                    DEBUG=True,
                    derivedPredicates=[EX_NS.Man,EX_NS.Woman],
                    nsBindings=network.nsMap,
                    identifyHybridPredicates = True)
    targetGraph = Graph(topDownStore)
    rt=targetGraph.query("ASK { ex:Tim ex:isMarriedTo ex:John }",
                         initNs=network.nsMap)
    print rt.askAnswer[0]

    topDownStore.DEBUG = False

    for ind in g.query("SELECT ?ind { ?ind a ?class FILTER(isUri(?ind) && ?class != owl:Class ) }"):
        print "Individual: ", ind
        print "--- Children ---"
        for child in targetGraph.query("SELECT ?child { ?child ex:isChildOf %s }"%ind.n3(),
                                       initNs=network.nsMap):
            print "\t- ", child
        print "----------------"
Exemplo n.º 8
0
    def MagicOWLProof(self, goals, rules, factGraph, conclusionFile):
        progLen = len(rules)
        magicRuleNo = 0
        dPreds = []
        for rule in AdditionalRules(factGraph):
            rules.append(rule)
        if not GROUND_QUERY and REASONING_STRATEGY != 'gms':
            goalDict = dict([((Variable('SUBJECT'), goalP, goalO), goalS)
                             for goalS, goalP, goalO in goals])
            goals = goalDict.keys()
        assert goals

        if REASONING_STRATEGY == 'gms':
            for rule in MagicSetTransformation(factGraph,
                                               rules,
                                               goals,
                                               dPreds):
                magicRuleNo += 1
                self.network.buildNetworkFromClause(rule)
                self.network.rules.add(rule)
                if DEBUG:
                    log.debug("\t", rule)
            log.debug("rate of reduction in the size of the program: ",
                      (100 - (float(magicRuleNo) / float(progLen)) * 100))

        if REASONING_STRATEGY in ['bfp', 'sld']:  # and not GROUND_QUERY:
            reasoningAlg = TOP_DOWN_METHOD if REASONING_STRATEGY == 'sld' \
                else BFP_METHOD
            topDownStore = TopDownSPARQLEntailingStore(
                factGraph.store,
                factGraph,
                idb=rules,
                DEBUG=DEBUG,
                nsBindings=nsMap,
                decisionProcedure=reasoningAlg,
                identifyHybridPredicates=REASONING_STRATEGY == 'bfp')
            targetGraph = Graph(topDownStore)
            for pref, nsUri in nsMap.items():
                targetGraph.bind(pref, nsUri)
            start = time.time()

            for goal in goals:
                queryLiteral = EDBQuery([BuildUnitermFromTuple(goal)],
                                        factGraph,
                                        None if GROUND_QUERY else [goal[0]])
                query = queryLiteral.asSPARQL()
                log.debug("Goal to solve ", query)
                rt = targetGraph.query(query, initNs=nsMap)
                if GROUND_QUERY:
                    self.failUnless(rt.askAnswer[0], "Failed top-down problem")
                else:
                    if (goalDict[goal]) not in rt or DEBUG:
                        for network, _goal in topDownStore.queryNetworks:
                            log.debug(network, _goal)
                            network.reportConflictSet(True)
                        for query in topDownStore.edbQueries:
                            log.debug(query.asSPARQL())
                    self.failUnless((goalDict[goal]) in rt,
                                    "Failed top-down problem")
            sTime = time.time() - start
            if sTime > 1:
                sTimeStr = "%s seconds" % sTime
            else:
                sTime = sTime * 1000
                sTimeStr = "%s ms" % sTime
            return sTimeStr
        elif REASONING_STRATEGY == 'gms':
            for goal in goals:
                adornedGoalSeed = AdornLiteral(goal).makeMagicPred()
                goal = adornedGoalSeed.toRDFTuple()
                if DEBUG:
                    log.debug("Magic seed fact ", adornedGoalSeed)
                factGraph.add(goal)
            timing = self.calculateEntailments(factGraph)
            for goal in goals:
                # self.failUnless(goal in self.network.inferredFacts or goal in factGraph,
                #                 "Failed GMS query")
                if goal not in self.network.inferredFacts and goal not in factGraph:
                    log.debug("missing triple %s" % (pformat(goal)))
                    # print(list(factGraph.adornedProgram))
                    # from FuXi.Rete.Util import renderNetwork
                    # dot = renderNetwork(
                    #   self.network,self.network.nsMap).write_jpeg('test-fail.jpeg')
                    self.network.reportConflictSet(True)
                    log.debug("=== Failed: %s ====" % pformat(goal))
                else:
                    log.debug("=== Passed! ===")
            return timing
Exemplo n.º 9
0
def main():
    g = Graph()
    Individual.factoryGraph = g
    g.bind('ex', EX_NS, override=False)

    isChildOf = Property(EX_NS.isChildOf)
    isMarriedTo = Property(EX_NS.isMarriedTo)

    woman = Class(EX_NS.Woman)
    man = Class(
        EX_NS.Man,
        subClassOf=[isMarriedTo | only | woman],
        # complementOf=woman
    )
    woman.subClassOf = [isMarriedTo | only | man]

    # Class(OWL_NS.Thing,subClassOf=[isMarriedTo|min|Literal(1)])

    man.extent = [EX_NS.John, EX_NS.Tim]
    woman.extent = [EX_NS.Kate, EX_NS.Mary]

    #Semantically equivalent to Abox assertion below
    # anon_cls1 = Class(
    #     subClassOf=[isMarriedTo|some|EnumeratedClass(members=[EX_NS.Mary])]
    # )
    # anon_cls1.extent = [EX_NS.John]
    g.add((EX_NS.John, isMarriedTo.identifier, EX_NS.Mary))

    #Semantically equivalent to Abox assertion below
    # anon_cls2 = Class(
    #     subClassOf=[isChildOf|some|EnumeratedClass(members=[EX_NS.John])]
    # )
    # anon_cls2.extent = [EX_NS.Kate]
    g.add((EX_NS.Kate, isChildOf.identifier, EX_NS.John))

    #Semantically equivalent to Abox assertion below
    # anon_cls3 = Class(
    #     subClassOf=[isChildOf|some|EnumeratedClass(members=[EX_NS.Mary])]
    # )
    # anon_cls3.extent = [EX_NS.Tim]
    g.add((EX_NS.Tim, isChildOf.identifier, EX_NS.Mary))

    print g.serialize(format='pretty-xml')

    rule_store, rule_graph, network = SetupRuleStore(makeNetwork=True)
    network.nsMap = {u'ex': EX_NS}

    # NormalFormReduction(g)
    dlp = network.setupDescriptionLogicProgramming(g,
                                                   addPDSemantics=False,
                                                   constructNetwork=False)
    for rule in dlp:
        print rule

    topDownStore = TopDownSPARQLEntailingStore(
        g.store,
        g,
        idb=dlp,
        DEBUG=True,
        derivedPredicates=[EX_NS.Man, EX_NS.Woman],
        nsBindings=network.nsMap,
        identifyHybridPredicates=True)
    targetGraph = Graph(topDownStore)
    rt = targetGraph.query("ASK { ex:Tim ex:isMarriedTo ex:John }",
                           initNs=network.nsMap)
    print rt.askAnswer[0]

    topDownStore.DEBUG = False

    for ind in g.query(
            "SELECT ?ind { ?ind a ?class FILTER(isUri(?ind) && ?class != owl:Class ) }"
    ):
        print "Individual: ", ind
        print "--- Children ---"
        for child in targetGraph.query(
                "SELECT ?child { ?child ex:isChildOf %s }" % ind.n3(),
                initNs=network.nsMap):
            print "\t- ", child
        print "----------------"
Exemplo n.º 10
0
from FuXi.SPARQL.BackwardChainingStore import TopDownSPARQLEntailingStore
from FuXi.Horn.HornRules import HornFromN3
from rdflib.graph import Graph
from rdflib import Namespace
from pprint import pprint

famNs = Namespace('http://dev.w3.org/2000/10/swap/test/cwm/fam.n3#')
nsMapping = {u'fam': famNs}
rules = HornFromN3('http://dev.w3.org/2000/10/swap/test/cwm/fam-rules.n3')
factGraph = Graph().parse('http://dev.w3.org/2000/10/swap/test/cwm/fam.n3',
                          format='n3')
factGraph.bind(u'fam', famNs)
print(factGraph.serialize(format="n3"))

dPreds = [famNs.ancestor]
topDownStore = TopDownSPARQLEntailingStore(factGraph.store,
                                           factGraph,
                                           idb=rules,
                                           derivedPredicates=dPreds,
                                           nsBindings=nsMapping)
targetGraph = Graph(topDownStore)
targetGraph.bind(u'ex', famNs)
pprint(
    list(
        targetGraph.query(
            'SELECT ?ANCESTOR { fam:david fam:ancestor ?ANCESTOR }',
            initNs=nsMapping)))