Exemplo n.º 1
0
def train_model(params):
    """
    function to create and train the model. This is called by hyper opt.
    It returned the loss (=optimisation metric), status and a dict with
    supporting information.
    """
    dims = [
        int(params['dim0']),
        int(params['dim1']),
        int(params['dim2']),
        int(params['dim3']), 2
    ]

    gae = GraphAutoEncoder(G,
                           learning_rate=0.01,
                           support_size=[5, 5],
                           dims=dims,
                           batch_size=12,
                           max_total_steps=250)

    train_res = {}
    for i in range(len(gae.dims)):
        train_res["l" + str(i + 1)] = gae.train_layer(i + 1, act=tf.nn.relu)

    train_res['all'] = gae.train_layer(len(gae.dims),
                                       all_layers=True,
                                       act=tf.nn.relu)

    loss_val = train_res['all']['val_l'][-3:]
    print(f"loss val {loss_val}")
    loss = sum(loss_val) / len(loss_val)
    train_res['loss'] = loss

    return {'loss': loss, 'status': STATUS_OK, 'hist': train_res}
Exemplo n.º 2
0
    def test_train_layer3(self):
        """
        Test with 3 hubs sampling using different support sizes per layer.
        """
        graph = gb.create_directed_barbell(4, 4)
        gae = GraphAutoEncoder(graph,
                               support_size=[3, 4, 5],
                               dims=[2, 3, 3, 3, 3, 2],
                               batch_size=3,
                               max_total_steps=1,
                               verbose=False,
                               seed=2,
                               act=tf.nn.relu)

        exp = [
            153.83647, 309.56152, 311.00153, 459.34726, 484.33817, 504.59387
        ]
        for i in range(6):
            res = gae.train_layer(i + 1)
            self.assertAlmostEqual(
                res['l'][0], exp[i], 4,
                f"loss of layer {i+1} does not match with expectations")

        res = gae.train_layer(6, all_layers=True)
        self.assertAlmostEqual(
            res['l'][0], 504.55478, 4,
            "loss of the layer 6 all traning does not match with expectations")
Exemplo n.º 3
0
    def test_train_layer2(self):
        """
        Test if the loss is reduced during training
        """
        graph = gb.create_directed_barbell(4, 4)
        gae = GraphAutoEncoder(graph,
                               support_size=[3, 3],
                               dims=[2, 3, 3, 2],
                               batch_size=3,
                               max_total_steps=10,
                               verbose=False,
                               seed=2,
                               act=tf.nn.relu)
        res = gae.train_layer(1, learning_rate=0.0001)
        self.assertTrue(res['val_l'][0] > res['val_l'][-1],
                        "loss has not decreased while training layer 1")

        res = gae.train_layer(2, learning_rate=0.0001)
        self.assertTrue(res['val_l'][0] > res['val_l'][-1],
                        "loss has not decreased while training layer 2")

        res = gae.train_layer(3, learning_rate=0.0001)
        self.assertTrue(res['val_l'][0] > res['val_l'][-1],
                        "loss has not decreased while training layer 3")

        res = gae.train_layer(4, learning_rate=0.0001)
        self.assertTrue(res['val_l'][0] > res['val_l'][-1],
                        "loss has not decreased while training layer 4")
Exemplo n.º 4
0
    def test_fit(self):
        """
        Test if fit function results in the same results as when trained separately
        """
        graph = gb.create_directed_barbell(4, 4)
        gae = GraphAutoEncoder(graph,
                               learning_rate=0.01,
                               support_size=[5, 5],
                               dims=[3, 5, 7, 6, 2],
                               batch_size=12,
                               max_total_steps=50,
                               verbose=True)

        train_res = {}
        for i in range(len(gae.dims)):
            train_res["l" + str(i + 1)] = gae.train_layer(i + 1)

        train_res['all'] = gae.train_layer(len(gae.dims),
                                           all_layers=True,
                                           dropout=None)
        embed = gae.calculate_embeddings()

        gae2 = GraphAutoEncoder(graph,
                                learning_rate=0.01,
                                support_size=[5, 5],
                                dims=[3, 5, 7, 6, 2],
                                batch_size=12,
                                max_total_steps=50,
                                verbose=True)
        gae2.fit(graph)
        embed2 = gae2.calculate_embeddings()
        embed3 = np.subtract(embed, embed2)
        self.assertAlmostEqual(
            np.sum(embed3), 0, 4,
            "fit method results in a different model when trained separately")
Exemplo n.º 5
0
    def test_train_layer5(self):
        """
        Test using final combination layer. Test if training works correctly and if the calculation
        of the embeddings works correctly.
        """
        graph = gb.create_directed_barbell(4, 4)
        for in_node, out_node, lbl in graph.edges(data=True):
            lbl['edge_lbl1'] = in_node / (out_node + 0.011) + 0.22

        gae = GraphAutoEncoder(graph,
                               support_size=[3, 3],
                               dims=[2, 3, 3, 2, 2],
                               batch_size=3,
                               max_total_steps=10,
                               verbose=False,
                               seed=2,
                               weight_label='edge_lbl1',
                               act=tf.nn.relu)

        for i in range(len(gae.dims)):
            res = gae.train_layer(i + 1, act=tf.nn.relu)

        self.assertAlmostEqual(
            res['l'][0], 134.9637, 4,
            "loss of the last layer does not match with expectations using a \
                               final combination layer")

        res = gae.train_layer(len(gae.dims), all_layers=True, act=tf.nn.relu)
        embed = gae.calculate_embeddings()
        self.assertAlmostEqual(
            embed[0][2], 38.221458435058594, 4,
            "embedding of the first batch node differs from expected value")
Exemplo n.º 6
0
    def test_train_layer(self):
        """
        Test if the loss of the initial setup is correct.
        """
        graph = gb.create_directed_barbell(4, 4)
        # ad node ids to the graph as label
        labels3 = [(i, i) for i in range(13)]
        labels3 = dict(labels3)
        nx.set_node_attributes(graph, labels3, 'label3')
        gae = GraphAutoEncoder(graph,
                               support_size=[3, 3],
                               dims=[2, 3, 3, 2],
                               batch_size=3,
                               max_total_steps=1,
                               verbose=False,
                               seed=2,
                               act=tf.nn.relu)
        res = gae.train_layer(1)
        self.assertAlmostEqual(
            res['l'][0], 2158.0686, 4,
            "loss of the initial setup does not match with expectations")

        res = gae.train_layer(2)
        self.assertAlmostEqual(
            res['l'][0], 2613.2725, 4,
            "loss of the initial setup does not match with expectations")

        res = gae.train_layer(3)
        self.assertAlmostEqual(
            res['l'][0], 2693.6736, 4,
            "loss of the initial setup does not match with expectations")

        res = gae.train_layer(4)
        self.assertAlmostEqual(
            res['l'][0], 2842.3582, 3,
            "loss of the initial setup does not match with expectations")

        res = gae.train_layer(4, all_layers=True)
        self.assertAlmostEqual(
            res['l'][0], 2842.1409, 4,
            "loss of the initial setup does not match with expectations")
Exemplo n.º 7
0
    def test_train_layer4(self):
        """
        Test using multiple edge label icw a custom weight label. The test checks if the
        weights are calculated correct.
        """
        graph = gb.create_directed_barbell(4, 4)
        for in_node, out_node, lbl in graph.edges(data=True):
            lbl['edge_lbl1'] = in_node / (out_node + 0.011) + 0.22

        gae = GraphAutoEncoder(graph,
                               support_size=[3, 3],
                               dims=[2, 3, 3, 2],
                               batch_size=3,
                               max_total_steps=10,
                               verbose=False,
                               seed=2,
                               weight_label='edge_lbl1',
                               act=tf.nn.relu)
        res = gae.train_layer(1, learning_rate=0.0001)
        self.assertAlmostEqual(
            res['l'][0], 49.392754, 4,
            "loss of the layer 1 does not match with expectations using a \
                               custom edge label")
Exemplo n.º 8
0
# correction edge weight for node # 20
ndic = graph.nodes(data='label1')
for u, v, d in graph.edges(data=True):
    if(v > 9) & (v < 21):
        d['weight'] = 1
    else:
        d['weight'] = ndic[u] * ndic[v]

#%% create and train model
gae = GraphAutoEncoder(graph, learning_rate=0.01, support_size=[5, 5], dims=[3, 5, 7, 6, 2],
                       batch_size=30, max_total_steps=1000, verbose=True, act=tf.nn.tanh)
if TRAIN:
    train_res = {}
    for i in range(len(gae.dims)):
        if i in [1, 2]:
            train_res["l"+str(i+1)] = gae.train_layer(i+1, dropout=0.1)
        else:
            train_res["l"+str(i+1)] = gae.train_layer(i+1)

    train_res['all'] = gae.train_layer(len(gae.dims), all_layers=True)
    pickle.dump(train_res, open(RESULTS_FILE, "wb"))
    gae.save_model(MODEL_FILENAME)
else:
    gae.load_model(MODEL_FILENAME, graph)

embed = gae.calculate_embeddings()


# %% get tabel with node details
indeg = graph.in_degree()
outdeg = graph.out_degree()
Exemplo n.º 9
0
#                             [(out_node, list(weight.values()))]
#         in_weight_dict[in_node] = in_weight_dict.get(in_node, list()) + \
#                             [(out_node, weight['weight'])]

# print(in_edges_dict)
# print(in_weight_dict)
gae = GraphAutoEncoder(G,
                       support_size=[3, 4],
                       dims=[2, 6, 6, 2, 1],
                       batch_size=5,
                       max_total_steps=10,
                       verbose=True,
                       seed=2)

for i in range(len(gae.dims)):
    h = gae.train_layer(i + 1, act=tf.nn.relu)

h = gae.train_layer(len(gae.dims), all_layers=True, act=tf.nn.relu)
# # print(h1['val_l'])

e = gae.calculate_embeddings()
print(f"e: \n {e}")

# fig, ax = plt.subplots()
# ax.scatter(e[:,1], e[:,2])
# for i, txt in enumerate(e[:,0]):
#     ax.annotate(txt, (e[i,1], e[i,2]))
# plt.xlabel("Leprechauns")
# plt.ylabel("Gold")
# plt.legend(loc='upper left')
# plt.show()