Exemplo n.º 1
0
    def run_KW(k, w):
        resp1.append([])
        resp2.append([])
        resp3.append([])

        nresp1.append([])
        nresp2.append([])
        nresp3.append([])

        W = w
        CC = cov(N, .6)

        NC = cov(N, .6 * w)

        NC = NC * np.linalg.norm(CC) / np.linalg.norm(NC)

        NN = 0 * np.random.multivariate_normal(np.zeros(len(NC)), NC,
                                               [3, NUM_CON])

        stim1 = np.array([cc * I1 for cc in con])
        stim2 = np.array([cc * I2 for cc in con])
        stim3 = np.array([cc * I3 for cc in con])

        resp1[-1].append(MGSM.gexp(0, stim1 + NN[0] / (k), CC, NC / (k * k)))
        resp2[-1].append(MGSM.gexp(0, stim2 + NN[1] / (k), CC, NC / (k * k)))
        resp3[-1].append(MGSM.gexp(0, stim3 + NN[2] / (k), CC, NC / (k * k)))

        nresp1[-1].append(MGSM.gnn(stim1 + 0 * NN[0] / (k), CC)[:, 0])
        nresp2[-1].append(MGSM.gnn(stim2 + 0 * NN[0] / (k), CC)[:, 0])
        nresp3[-1].append(MGSM.gnn(stim3 + 0 * NN[0] / (k), CC)[:, 0])
Exemplo n.º 2
0
def make_GSM_resp(filt, quenched, K, mgs, tag, COR, ncor, n_trial=1):

    #make sure everything is the right type
    assert quenched in (True, False)
    assert type(ncor) == np.ndarray

    GV = []
    GVnn = []

    #generate samples for each filter set
    if quenched:
        nftemp = np.tile(filt, [n_trial, 1])

        print(nftemp.shape)

        noise = np.reshape(
            np.random.multivariate_normal(np.zeros(np.prod(nftemp.shape[1:])),
                                          ncor, n_trial * filt.shape[0]),
            tuple([n_trial * filt.shape[0]]) + filt.shape[1:])

        nftemp += noise
    else:
        nftemp = filt

    #run it for each value of k
    for k in K:
        GV.append(
            np.array([
                MGSM.gexp(i, nftemp, COR, k * k * ncor, precom=True)
                for i in range(filt.shape[1])
            ]).transpose())

        GVnn.append(MGSM.gnn(filt, COR))
        print(GV[-1].shape)

    GV = np.concatenate(GV)
    GVnn = np.concatenate(GVnn)

    print(tag)
    print(GV.shape)
    print(GVnn.shape)

    np.savetxt(tag + "_noisy.csv", GV)
    np.savetxt(tag + "_clean.csv", GVnn)
Exemplo n.º 3
0
def run():

    #what it is that we want to do here? We want to look at COS

    resp1 = []
    resp2 = []
    resp3 = []

    nresp1 = []
    nresp2 = []
    nresp3 = []

    NUM_CURVE = 20
    NUM_CON = 50

    CMAX = 2.5
    CMIN = -2
    N = 8

    I1 = inp(N, float(N) / 5, 1, 1, -1 + N / 2)
    I2 = inp(N, float(N) / 5, 1, 0, -1 + N / 2)
    I3 = inp(N, float(N) / 5, 0, 1, -1 + N / 2)

    KK = np.logspace(-1, 1, NUM_CURVE)

    for k in KK:
        print(k)
        W = float(N) / (5)
        CC = cov(N, W)
        NC = CC

        np.savetxt("./covariance_test.csv", CC)

        stim1 = np.array([cc * I1 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
        stim2 = np.array([cc * I2 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
        stim3 = np.array([cc * I3 for cc in np.logspace(CMIN, CMAX, NUM_CON)])

        resp1.append(MGSM.gexp(0, stim1, CC, NC / (k * k), precom=False))
        resp2.append(MGSM.gexp(0, stim2, CC, NC / (k * k), precom=False))
        resp3.append(MGSM.gexp(0, stim3, CC, NC / (k * k), precom=False))

        nresp1.append(MGSM.gnn(stim1, CC)[:, 0])
        nresp2.append(MGSM.gnn(stim2, CC)[:, 0])
        nresp3.append(MGSM.gnn(stim3, CC)[:, 0])

    resp1 = np.array(resp1)
    resp2 = np.array(resp2)
    resp3 = np.array(resp3)

    nresp1 = np.array(nresp1)
    nresp2 = np.array(nresp2)
    nresp3 = np.array(nresp3)

    AI = resp1 / (resp2 + resp3)
    nAI = nresp1 / (nresp2 + nresp3)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_prop_cycle("color",
                      [cm(1. * i / NUM_CURVE) for i in range(NUM_CURVE)])

    K = np.linspace(.5, 5, NUM_CURVE)
    cc = np.logspace(CMIN, CMAX, NUM_CON) / (10**CMAX)

    for k in range(0, len(AI), 1):
        ax.plot(cc, AI[k], label=str(K[k]))
        ax.plot(cc, nAI[k], '--')

    handles, labels = ax.get_legend_handles_labels()
    #    ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
    #               ncol=2, mode="expand", borderaxespad=0.)
    ax.plot(cc, [1 for k in range(len(cc))], 'k--')

    plt.xscale('log')
    fig.savefig("./paramfig.pdf")

    MAX = np.array([[KK[k], np.max(AI[k])] for k in range(len(AI))])
    plt.figure()
    plt.plot(MAX[:, 0], MAX[:, 1], "r")
    plt.xscale('log')
    plt.savefig("./max_AI_by_k.pdf")

    pts = []
    for k in range(len(AI)):
        print(np.argmax(AI[k]))
        for j in range(np.argmax(AI[k]), len(AI[k]) - 1):
            if AI[k][j] >= 1 and AI[k][j + 1] <= 1:
                pts.append([KK[k], cc[j]])
                break

    pts = np.array(pts)

    plt.figure()

    plt.plot(pts[:, 0], pts[:, 1])
    plt.xscale('log')
    plt.yscale('log')

    plt.savefig("./trans_by_K.pdf")
Exemplo n.º 4
0
def run():
    def c2(c):
        return np.array([[1., c], [c, 1.]])

    def cov(n, w, dr=0):
        distance = np.array([[((i - j + (n / 2.)) % n) - n / 2.
                              for i in range(n)] for j in range(n)])

        gauss = np.exp(-(distance**2) / (2. * w * w)) - dr

        out = np.dot(gauss, gauss)

        return out / out[0, 0]

    def inp(n, w, c1, c2, i):
        stim1 = np.array([((j + (n / 2.)) % n) - (n / 2.) for j in range(n)])
        stim2 = np.array([(((j - (i % n)) + (n / 2.)) % n) - (n / 2.)
                          for j in range(n)])

        gauss1 = np.exp(-(stim1**2) / (2. * w * w))
        gauss2 = np.exp(-(stim2**2) / (2. * w * w))

        return c1 * gauss1 + c2 * gauss2

    LO = []
    HI = []
    nnLO = []
    nnHI = []

    ip = np.array([[1, 0], [0, 1], [1, 1]])

    for c in np.linspace(-.9, .9, 20):
        cov = c2(c)
        nc = np.identity(2) * (1 + c)

        sHI = GSM.gexp(0, 20 * ip, cov, nc * (2 * 2), precom=True)
        sLO = GSM.gexp(0, ip, cov, nc * (2 * 2), precom=False)
        snnLO = GSM.gnn(ip, cov)[:, 0]
        snnHI = GSM.gnn(20 * ip, cov)[:, 0]

        HI.append([c, sHI[2] / (sHI[0])])
        LO.append([c, sLO[2] / (sLO[0])])
        nnHI.append([c, snnHI[2] / (snnHI[0])])
        nnLO.append([c, snnLO[2] / (snnLO[0])])

    HI = np.array(HI)
    LO = np.array(LO)
    nnHI = np.array(nnHI)
    nnLO = np.array(nnLO)

    plt.plot(HI[:, 0], [1 for x in HI], 'k--', linewidth=1)

    plt.plot(HI[:, 0], HI[:, 1], 'k')
    plt.plot(nnHI[:, 0], nnHI[:, 1], 'k--')
    plt.plot(LO[:, 0], LO[:, 1], 'r')
    plt.plot(nnLO[:, 0], nnLO[:, 1], 'r--')

    plt.xlabel("Correlation")
    plt.ylabel("Modulation Ratio")

    plt.xlim(-1, 1)
    plt.ylim(0, 2)

    plt.xticks([-.5, 0, .5])

    plt.tight_layout()

    plt.savefig("./2DAIparam.pdf")
    print("done with AI")
    #what it is that we want to do here? We want to look at COS

    con = 20 * np.logspace(-2, 0, 50)

    NN = 2
    WW = np.array([.15])

    out1 = []
    out2 = []

    nnout1 = []
    nnout2 = []

    out12 = []
    out22 = []

    nnout12 = []
    nnout22 = []

    NCOV = np.identity(2)

    k = .75

    I1 = np.array([[c1, c1 / 10] for c1 in con])
    I2 = np.array([[c1 + con[-1] / 10, con[-1] + c1 / 10] for c1 in con])

    I12 = np.array([[c1, 0] for c1 in con])
    I22 = np.array([[c1, con[-1]] for c1 in con])

    print(I1.shape)
    print(I2.shape)

    CC = c2(.6)
    NCOV = np.identity(2)

    out1 = GSM.gexp(0, I1, CC, NCOV / (k * k), precom=False)
    out2 = GSM.gexp(0, I2, CC, NCOV / (k * k), precom=False)

    nnout1 = GSM.gnn(I1, CC).T
    nnout2 = GSM.gnn(I2, CC).T

    out12 = GSM.gexp(0, I12, CC, NCOV / (k * k), precom=False)
    out22 = GSM.gexp(0, I22, CC, NCOV / (k * k), precom=False)

    nnout12 = GSM.gnn(I12, CC).T
    nnout22 = GSM.gnn(I22, CC).T

    print(nnout2)

    plt.figure()

    plt.plot(con / con[-1], out1, 'r')
    plt.plot(con / con[-1], out2, 'k')

    plt.plot(con / con[-1], nnout1[0], 'r--')
    plt.plot(con / con[-1], nnout2[0], 'k--')

    plt.xlabel("contrast")
    plt.ylabel("Respose")

    #    plt.yscale("log")
    plt.xscale("log")

    plt.tight_layout()

    plt.savefig("./2Dssfig_0.pdf")

    plt.figure()

    plt.plot(con / con[-1], out12, 'r')
    plt.plot(con / con[-1], out22, 'k')

    plt.plot(con / con[-1], nnout12[0], 'r--')
    plt.plot(con / con[-1], nnout22[0], 'k--')

    plt.xlabel("contrast")
    plt.ylabel("Respose")

    #    plt.yscale("log")
    plt.xscale("log")

    plt.tight_layout()

    plt.savefig("./2Dssfig_1.pdf")
Exemplo n.º 5
0
def run_k():

    #what it is that we want to do here? We want to look at COS

    resp1 = []
    resp2 = []
    resp3 = []

    nresp1 = []
    nresp2 = []
    nresp3 = []

    NUM_CURVE = 10
    NUM_CON = 50
    NUM_W = 20

    CMAX = 1.
    CMIN = -2.
    N = 8

    I1 = inp(N, .6, 1, 1, -1 + N / 2)
    I2 = inp(N, .6, 1, 0, -1 + N / 2)
    I3 = inp(N, .6, 0, 1, -1 + N / 2)

    KK = np.logspace(0, 1, NUM_CURVE)

    con = np.logspace(CMIN, CMAX, NUM_CON)

    WW = np.linspace(.1, 2, NUM_W)

    for w in range(len(WW)):
        resp1.append([])
        resp2.append([])
        resp3.append([])

        nresp1.append([])
        nresp2.append([])
        nresp3.append([])

        for k in KK:
            print(k)
            W = WW[w]
            CC = cov(N, W)
            NC = CC

            np.savetxt("./covariance_test.csv", CC)

            stim1 = np.array(
                [cc * I1 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
            stim2 = np.array(
                [cc * I2 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
            stim3 = np.array(
                [cc * I3 for cc in np.logspace(CMIN, CMAX, NUM_CON)])

            resp1[w].append(MGSM.gexp(0, stim1, CC,
                                      NC / (k * k)))  #,precom = False))
            resp2[w].append(MGSM.gexp(0, stim2, CC,
                                      NC / (k * k)))  #,precom = False))
            resp3[w].append(MGSM.gexp(0, stim3, CC,
                                      NC / (k * k)))  #,precom = False))

            nresp1[w].append(MGSM.gnn(stim1, CC)[:, 0])
            nresp2[w].append(MGSM.gnn(stim2, CC)[:, 0])
            nresp3[w].append(MGSM.gnn(stim3, CC)[:, 0])

    resp1 = np.array(resp1)
    resp2 = np.array(resp2)
    resp3 = np.array(resp3)

    nresp1 = np.array(nresp1)
    nresp2 = np.array(nresp2)
    nresp3 = np.array(nresp3)

    AI = resp1 / (resp2 + resp3)
    nAI = nresp1 / (nresp2 + nresp3)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_prop_cycle("color",
                      [cm(1. * i / NUM_CURVE) for i in range(NUM_CURVE)])

    K = np.linspace(.5, 5, NUM_CURVE)
    cc = 100 * np.logspace(CMIN, CMAX, NUM_CON) / (10**CMAX)

    for w in [1]:
        for k in range(0, len(AI[w]), len(AI[w]) / 5):
            ax.plot(100 * con / np.max(con), AI[w, k], label=str(K[k]))
            ax.plot(100 * con / np.max(con), nAI[w, k], '--')

    handles, labels = ax.get_legend_handles_labels()
    #    ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
    #               ncol=2, mode="expand", borderaxespad=0.)
    ax.plot(cc, [1 for k in range(len(cc))], 'k--')

    plt.xlabel("Contrast")
    plt.ylabel("A.I.")

    plt.tight_layout()

    fig.savefig("./paramfig_K.pdf")

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_prop_cycle("color",
                      [cm(1. * i / NUM_CURVE) for i in range(NUM_CURVE)])

    WW = np.linspace(.1, 2, NUM_W)
    cc = 100 * np.logspace(CMIN, CMAX, NUM_CON) / (10**CMAX)

    for k in [5]:
        for w in range(0, len(AI), len(AI) / 5):
            ax.plot(100 * con / np.max(con), AI[w, k], label=str(WW[w]))
            ax.plot(100 * con / np.max(con), nAI[w, k], '--')

    handles, labels = ax.get_legend_handles_labels()
    #    ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
    #               ncol=2, mode="expand", borderaxespad=0.)
    ax.plot(cc, [1 for k in range(len(cc))], 'k--')

    plt.xlim([0, 20])
    plt.xlabel("Contrast")
    plt.ylabel("A.I.")

    plt.tight_layout()

    fig.savefig("./paramfig_W.pdf")

    plt.figure()
    for w in [5]:
        MAX = np.array([[1. / KK[k], np.max(AI[w, k])]
                        for k in range(len(AI[w]))])
        plt.plot(MAX[:, 0], MAX[:, 1], colortab[0])


#    plt.xscale('log')

    plt.xlabel("1/SNR")
    plt.ylabel("A.I.")

    plt.tight_layout()

    plt.savefig("./max_AI_by_k.pdf")

    plt.figure()
    for k in [5]:
        MAX = np.array([[WW[w] * 180. / np.pi,
                         np.max(AI[w, k])] for w in range(len(AI))])
        plt.plot(MAX[:, 0], MAX[:, 1], colortab[0])

    plt.xlabel("Width (deg.)")
    plt.ylabel("A.I.")
    plt.tight_layout()

    plt.savefig("./max_AI_by_W.pdf")

    plt.figure()

    for w in [5]:
        pts = []
        for k in range(len(AI[w])):
            pts.append(
                [1. / KK[k],
                 get_trans(AI[w, k], 100 * con / np.max(con))])

        pts = np.array(pts)

        plt.plot(pts[:, 0], pts[:, 1], colortab[0])

    plt.xlabel("1/SNR")
    plt.ylabel("Contrast")

    plt.xscale('log')
    plt.yscale('linear')

    plt.tight_layout()

    plt.savefig("./trans_by_K.pdf")

    plt.figure()

    for k in [5]:
        pts = []
        for w in range(len(AI)):
            pts.append([
                WW[w] * 180. / np.pi,
                get_trans(AI[w, k], 100 * con / np.max(con))
            ])

        pts = np.array(pts)

        plt.plot(pts[:, 0], pts[:, 1], colortab[0])

    plt.xlabel("Width (deg.)")
    plt.ylabel("Contrast")

    plt.yscale('linear')

    plt.tight_layout()

    plt.savefig("./trans_by_W.pdf")
Exemplo n.º 6
0
def run_cov():

    #what it is that we want to do here? We want to look at COS

    resp1 = []
    resp2 = []
    resp3 = []

    nresp1 = []
    nresp2 = []
    nresp3 = []

    NUM_CURVE = 10
    NUM_CON = 50
    NUM_W = 10

    CMAX = 1.
    CMIN = -1.
    N = 8

    I1 = inp(N, .6, 1, 1, -1 + N / 2)
    I2 = inp(N, .6, 1, 0, -1 + N / 2)
    I3 = inp(N, .6, 0, 1, -1 + N / 2)

    KK = np.logspace(0, 1, NUM_CURVE)

    con = np.logspace(CMIN, CMAX, NUM_CON)

    WW = [.1, .5, 1.]

    for k in WW:

        print(k)
        CC = cov(N, .5)
        if k == WW[0]:
            NC = np.identity(N)
        else:
            NC = cov(N, k)

        NC = NC * np.linalg.norm(CC) / (np.linalg.norm(NC) * 4)

        sn = 1

        stim1 = np.array([cc * I1 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
        stim2 = np.array([cc * I2 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
        stim3 = np.array([cc * I3 for cc in np.logspace(CMIN, CMAX, NUM_CON)])

        resp1.append(sn * MGSM.gexp(0, stim1 / sn, CC, NC, precom=False))
        resp2.append(sn * MGSM.gexp(0, stim2 / sn, CC, NC, precom=False))
        resp3.append(sn * MGSM.gexp(0, stim3 / sn, CC, NC, precom=False))

        nresp1.append(MGSM.gnn(stim1, CC)[:, 0])
        nresp2.append(MGSM.gnn(stim2, CC)[:, 0])
        nresp3.append(MGSM.gnn(stim3, CC)[:, 0])

    resp1 = np.array(resp1)
    resp2 = np.array(resp2)
    resp3 = np.array(resp3)

    nresp1 = np.array(nresp1)
    nresp2 = np.array(nresp2)
    nresp3 = np.array(nresp3)

    AI = resp1 / (resp2 + resp3)
    nAI = nresp1 / (nresp2 + nresp3)

    print(AI[-1])

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_prop_cycle("color",
                      [cm(1. * i / NUM_CURVE) for i in range(NUM_CURVE)])

    K = np.linspace(.5, 5, NUM_CURVE)
    cc = 100 * np.logspace(CMIN, CMAX, NUM_CON) / (10**CMAX)

    for k in range(0, len(AI)):
        ax.plot(100 * con / np.max(con), AI[k], colortab[k], label=str(K[k]))
        ax.plot(100 * con / np.max(con), nAI[k], colortab[k] + '--')

    handles, labels = ax.get_legend_handles_labels()
    #    ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
    #               ncol=2, mode="expand", borderaxespad=0.)
    ax.plot(cc, [1 for k in range(len(cc))], 'k--')

    plt.xlabel("Contrast")
    plt.ylabel("A.I.")

    plt.tight_layout()

    fig.savefig("./paramfig_NC.pdf")
Exemplo n.º 7
0
                                0,
                                16,
                                0,
                                5 * 16,
                                int(np.max(np.linalg.norm(sites, axis=1))),
                                get_grat=True)

    inp = np.array([get_grating_data(g, sites, RF) / fac for g in grat])

    nc = CNS
    f = .5 * np.identity(len(CNS))
    q = inf.Q_self_con(CNS, f)

    inp += np.random.multivariate_normal(np.zeros_like(inp[0]), nc, len(inp))

    aI = np.tile(np.expand_dims(inp, 1), [1, 3, 1])

    resp = inf.gnn(inp, CNS)
    iresp = inf.att_gexp(0, aI, CNS, nc, q, f)

    f = .75 * np.identity(len(CNS))
    q = inf.Q_self_con(CNS, f)

    aresp = inf.att_gexp(0, aI, CNS, nc, q, f)

    print(oris)

    np.savetxt("./random_gsm_resp.csv", resp)
    np.savetxt("./a_random_gsm_resp.csv", aresp)
    np.savetxt("./i_random_gsm_resp.csv", iresp)
Exemplo n.º 8
0
def run_k():

    #what it is that we want to do here? We want to look at COS

    resp1 = []
    resp2 = []
    resp3 = []

    nresp1 = []
    nresp2 = []
    nresp3 = []

    NUM_CURVE = 10
    NUM_CON = 50

    CMAX = 1.
    CMIN = -2.
    N = 8

    I1 = inp(N, .6, 1, 1, -1 + N / 2)
    I2 = inp(N, .6, 1, 0, -1 + N / 2)
    I3 = inp(N, .6, 0, 1, -1 + N / 2)

    KK = np.logspace(0, 1, NUM_CURVE)

    con = np.logspace(CMIN, CMAX, NUM_CON)

    if 0:
        for k in KK:
            print(k)
            W = .6
            CC = cov(N, W)
            NC = CC

            np.savetxt("./covariance_test.csv", CC)

            stim1 = np.array(
                [cc * I1 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
            stim2 = np.array(
                [cc * I2 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
            stim3 = np.array(
                [cc * I3 for cc in np.logspace(CMIN, CMAX, NUM_CON)])

            resp1.append(MGSM.gexp(0, stim1, CC, NC / (k * k), precom=False))
            resp2.append(MGSM.gexp(0, stim2, CC, NC / (k * k), precom=False))
            resp3.append(MGSM.gexp(0, stim3, CC, NC / (k * k), precom=False))

            nresp1.append(MGSM.gnn(stim1, CC)[:, 0])
            nresp2.append(MGSM.gnn(stim2, CC)[:, 0])
            nresp3.append(MGSM.gnn(stim3, CC)[:, 0])

        np.savetxt("./param_files/kresp1.csv", resp1)
        np.savetxt("./param_files/kresp2.csv", resp2)
        np.savetxt("./param_files/kresp3.csv", resp3)

        np.savetxt("./param_files/knnresp1.csv", nresp1)
        np.savetxt("./param_files/knnresp2.csv", nresp2)
        np.savetxt("./param_files/knnresp3.csv", nresp3)
    else:
        resp1 = np.loadtxt("./param_files/kresp1.csv")
        resp2 = np.loadtxt("./param_files/kresp2.csv")
        resp3 = np.loadtxt("./param_files/kresp3.csv")

        nresp1 = np.loadtxt("./param_files/knnresp1.csv")
        nresp2 = np.loadtxt("./param_files/knnresp2.csv")
        nresp3 = np.loadtxt("./param_files/knnresp3.csv")

    resp1 = np.array(resp1)
    resp2 = np.array(resp2)
    resp3 = np.array(resp3)

    nresp1 = np.array(nresp1)
    nresp2 = np.array(nresp2)
    nresp3 = np.array(nresp3)

    AI = resp1 / (resp2 + resp3)
    nAI = nresp1 / (nresp2 + nresp3)

    fig = plt.figure()
    ax = fig.add_subplot(111)

    K = np.linspace(.5, 5, NUM_CURVE)
    cc = np.logspace(CMIN, CMAX, NUM_CON) / (10**CMAX)

    for k in range(0, len(AI), 2):
        ax.plot(con / np.max(con), AI[k], label=str(K[k]))
        ax.plot(con / np.max(con), nAI[k], '--')

    ax.plot(cc, [1 for k in range(len(cc))], 'k--')
    plt.tight_layout()
    plt.xlabel("contrast")
    plt.ylabel("AI")

    plt.ylim(0, 1.5)

    fig.savefig("./paramfig_K.pdf")

    MAX = np.array([[1. / KK[k], np.max(AI[k])] for k in range(len(AI))])
    plt.figure()
    plt.plot(MAX[:, 0], MAX[:, 1], "r")
    plt.xscale('log')
    plt.tight_layout()
    plt.xlabel("1/SNR")
    plt.ylabel("Max AI")

    plt.savefig("./max_AI_by_k.pdf")

    plt.figure()
    plt.plot(con / np.max(con), resp2[NUM_CURVE / 2, :], "r")
    plt.plot(con / np.max(con), nresp2[NUM_CURVE / 2, :], "r--")
    plt.xscale('log')
    plt.tight_layout()

    plt.xlabel("Contrast")
    plt.ylabel("Response")

    plt.savefig("./param_CRF.pdf")

    pts = []
    for k in range(len(AI)):
        pts.append([KK[k], get_trans(AI[k], con)])

    pts = np.array(pts)

    plt.figure()

    plt.plot(1. / pts[:, 0], pts[:, 1])
    plt.xscale('log')
    #    plt.yscale('log')

    plt.tight_layout()

    plt.xlabel("1/SNR")
    plt.ylabel("Transition (con.)")

    plt.savefig("./trans_by_K.pdf")
Exemplo n.º 9
0
def run_w():

    #what it is that we want to do here? We want to look at COS

    resp1 = []
    resp2 = []
    resp3 = []

    nresp1 = []
    nresp2 = []
    nresp3 = []

    NUM_CURVE = 20
    NUM_CON = 50

    CMAX = 1
    CMIN = -2
    N = 8

    I1 = inp(N, .6, 1, 1, -1 + N / 2)
    I2 = inp(N, .6, 1, 0, -1 + N / 2)
    I3 = inp(N, .6, 0, 1, -1 + N / 2)

    KK = np.linspace(.27, .75, NUM_CURVE)

    con = np.logspace(CMIN, CMAX, NUM_CON)

    if 0:
        for k in KK:
            print(k)
            W = k
            CC = cov(N, W)
            NC = cov(N, W)

            np.savetxt("./covariance_test.csv", CC)

            stim1 = np.array(
                [cc * I1 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
            stim2 = np.array(
                [cc * I2 for cc in np.logspace(CMIN, CMAX, NUM_CON)])
            stim3 = np.array(
                [cc * I3 for cc in np.logspace(CMIN, CMAX, NUM_CON)])

            resp1.append(MGSM.gexp(0, stim1, CC, NC / (2 * 2), precom=False))
            resp2.append(MGSM.gexp(0, stim2, CC, NC / (2 * 2), precom=False))
            resp3.append(MGSM.gexp(0, stim3, CC, NC / (2 * 2), precom=False))

            nresp1.append(MGSM.gnn(stim1, CC)[:, 0])
            nresp2.append(MGSM.gnn(stim2, CC)[:, 0])
            nresp3.append(MGSM.gnn(stim3, CC)[:, 0])

        np.savetxt("./param_files/wresp1.csv", resp1)
        np.savetxt("./param_files/wresp2.csv", resp2)
        np.savetxt("./param_files/wresp3.csv", resp3)

        np.savetxt("./param_files/wnnresp1.csv", nresp1)
        np.savetxt("./param_files/wnnresp2.csv", nresp2)
        np.savetxt("./param_files/wnnresp3.csv", nresp3)
    else:
        resp1 = np.loadtxt("./param_files/wresp1.csv")
        resp2 = np.loadtxt("./param_files/wresp2.csv")
        resp3 = np.loadtxt("./param_files/wresp3.csv")

        nresp1 = np.loadtxt("./param_files/wnnresp1.csv")
        nresp2 = np.loadtxt("./param_files/wnnresp2.csv")
        nresp3 = np.loadtxt("./param_files/wnnresp3.csv")

    resp1 = np.array(resp1)
    resp2 = np.array(resp2)
    resp3 = np.array(resp3)

    nresp1 = np.array(nresp1)
    nresp2 = np.array(nresp2)
    nresp3 = np.array(nresp3)

    AI = resp1 / (resp2 + resp3)
    nAI = nresp1 / (nresp2 + nresp3)

    fig = plt.figure()
    ax = fig.add_subplot(111)

    cc = con / np.max(con)

    for k in range(0, len(AI), 2):
        ax.plot(cc, AI[k], label=str(KK[k]))
        ax.plot(cc, nAI[k], '--')

    ax.plot(con / np.max(con), [1 for k in range(len(cc))], 'k--')

    plt.xlabel("contrast")
    plt.ylabel("A.I.")

    plt.ylim(.5, 1.25)

    plt.tight_layout()

    fig.savefig("./paramfig_W.pdf")

    MAX = np.array([[KK[k] * 180 / np.pi, np.max(AI[k])]
                    for k in range(len(AI))])
    plt.figure()
    plt.plot(MAX[:, 0], MAX[:, 1], "r")
    plt.xscale('log')
    plt.tight_layout()

    plt.xlabel("w")
    plt.ylabel("Max AI")

    plt.savefig("./max_AI_by_W.pdf")

    pts = []
    for k in range(len(AI)):
        pts.append([KK[k], get_trans(AI[k], con)])

    pts = np.array(pts)

    plt.figure()

    plt.plot(pts[:, 0], pts[:, 1])
    plt.xscale('log')
    plt.yscale('log')
    plt.tight_layout()

    plt.xlabel("w")
    plt.ylabel("Transition (con)")

    plt.savefig("./trans_by_W.pdf")

    plt.figure()

    plt.plot(KK, AI[:, -6])
    plt.tight_layout()

    plt.title("con. = {}".format(KK[-6]))

    plt.xlabel("w")
    plt.ylabel("High Contrast AI")

    plt.savefig("./HighAI_by_W.pdf")
Exemplo n.º 10
0
def run_WDIFF_plots():

    #what it is that we want to do here? We want to look at COS


    resp1 = []
    resp2 = []
    resp3 = []
    
    nresp1 = []
    nresp2 = []
    nresp3 = []

    NUM_CURVE = 10
    NUM_CON = 50
    NUM_W = 20
    
    CMAX = 1.
    CMIN = -2.
    N = 8

    I1 = inp(N,.6,1,1,-1 + N/2)
    I2 = inp(N,.6,1,0,-1 + N/2)
    I3 = inp(N,.6,0,1,-1 + N/2)

    WW = np.logspace(.1,10,NUM_CURVE)

    con = np.logspace(CMIN,CMAX,NUM_CON)

    for w in [0,1,-1]:
        resp1.append([])
        resp2.append([])
        resp3.append([])

        nresp1.append([])
        nresp2.append([])
        nresp3.append([])

        for k in WW:
            W = w
            CC = cov(N,.6)

            if W == 0 or W == -1:
                NC = cov_special(N,W)
            else:
                NC = CC.copy()
                
            NC = NC*np.linalg.norm(CC)/np.linalg.norm(NC)
            
            np.savetxt("./covariance_test.csv",CC)
            
            stim1 = np.array([cc * I1 for cc in np.logspace(CMIN,CMAX,NUM_CON)])
            stim2 = np.array([cc * I2 for cc in np.logspace(CMIN,CMAX,NUM_CON)])
            stim3 = np.array([cc * I3 for cc in np.logspace(CMIN,CMAX,NUM_CON)])
            
            resp1[-1].append(MGSM.gexp(0,stim1,CC,NC/(k*k)))
            resp2[-1].append(MGSM.gexp(0,stim2,CC,NC/(k*k)))
            resp3[-1].append(MGSM.gexp(0,stim3,CC,NC/(k*k)))
            
            nresp1[-1].append(MGSM.gnn(stim1,CC)[:,0])
            nresp2[-1].append(MGSM.gnn(stim2,CC)[:,0])
            nresp3[-1].append(MGSM.gnn(stim3,CC)[:,0])

    resp1 = np.array(resp1)
    resp2 = np.array(resp2)
    resp3 = np.array(resp3)

    nresp1 = np.array(nresp1)
    nresp2 = np.array(nresp2)
    nresp3 = np.array(nresp3)

    AI = resp1/(resp2+resp3)
    nAI = nresp1/(nresp2+nresp3)

    for w in range(len(AI)):
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.set_prop_cycle("color",[cm(1.*i/NUM_CURVE) for i in range(NUM_CURVE)])

        K = np.linspace(.5,5,NUM_CURVE)
        cc = 100*np.logspace(CMIN,CMAX,NUM_CON)/(10**CMAX)
        
        for k in range(0,len(AI[w]),len(AI[w])/5):
            ax.plot(100*con/np.max(con),AI[w,k],label=str(K[k]))
            ax.plot(100*con/np.max(con),nAI[w,k],'--')
            
        handles, labels = ax.get_legend_handles_labels()
        #    ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
        #               ncol=2, mode="expand", borderaxespad=0.)
        ax.plot(cc,[1 for k in range(len(cc))],'k--')
        plt.xlim([0,20])
        plt.xlabel("Contrast")
        plt.ylabel("A.I.")

        plt.tight_layout()
        
        fig.savefig("./paramfig_K_{}_by_W.pdf".format(w))