Exemplo n.º 1
0
def printAllCyclicCodes(factorPolynomials):#выводим все циклические коды, которые можем сделать

    s = ''
    product = np.array([])
    for i in range(0, len(factorPolynomials)):
        if i == 0:
            product = factorPolynomials[i]
        else:
            product = GF2.multPoly(product, factorPolynomials[i])
            s += '(' + GF2.polyToString(factorPolynomials[i]) + ') '
    print(s + '= ' + GF2.polyToString(product))
    print() 
 
    numberCodes = 2**(len(factorPolynomials)) - 2
    n = degree(product)
    print('Всего возможны', numberCodes, 'различных циклических кодов длиной', n)
    print('так как мы можем найти', numberCodes, 'различных неприводимых двоичных полиномов')
    print(GF2.polyToString(product))
    print(np.bitwise_and(1, 3))
     
    print('Code <- Generator polynomial')
    for i in range(0, numberCodes):
        s = ''
        gp = np.array([]) # generator polynomial
        for j in range(0, len(factorPolynomials)):
            if np.bitwise_and(i+1, 2**j) > 0:
                if s =='':
                    gp = factorPolynomials[j]
                else:
                    gp = GF2.multPoly(gp, factorPolynomials[j])
                s += '(' + GF2.polyToString(factorPolynomials[j]) + ')' 
 
        print('Ccyc(' + str(n) + ', ' + str(degree(gp)) + ') <- g' + str(i+1) + ' = ' + s + ' = ' + GF2.polyToString(gp)) 
Exemplo n.º 2
0
 def __init__(self, g, n):
     assert g[0] == 1, \
         "g0 must equal to 1"
     assert n >= degree(g), \
         "n=%i must be >= degree(g)=%i" % (n, degree(g))
     self._g = g[:n]; #auto remove too much dangling zeros
     self._n = n;
Exemplo n.º 3
0
 def __init__(self, g, n):
     assert g[0] == 1, \
            "g0 must equal to 1"
     assert n >= degree(g), \
            "n=%i must be >= degree(g)=%i" % (n, degree(g))
     self._g = g[:n]; #auto remove too much dangling zeros
     self._n = n 
Exemplo n.º 4
0
def encode(m, g, systematic = True):
    if systematic:
        r = degree(g) # r = n - k
        Xr = X(r) # X^(n-k)
        XrmX = GF2.multPoly(Xr, m) # X^(n-k) * m(X)
        p = GF2.modPoly(XrmX, g) # p(X) = (X^(n-k) * m(X)) mod g(X) 
        c = GF2.addPoly(p, XrmX) # c(X) = p(X) + (X^(n-k) * m(X))
    else:
        c = GF2.multPoly(m, g)
    return c.astype(int) 
Exemplo n.º 5
0
def gToG(g, n, systematic = True, verbose = False):#получаем образующую матрицу
    k = n - degree(g)
    g = padEnd(g, n)
    G = np.empty([k, n])
    for i in range(0, k):
        G[i,:] = shift(g, i)
    # матрицу необходимо повернуть
    # -> systematic form
    if systematic:
        G = makeSystematic(G, verbose) 
    return G.astype(int) 
Exemplo n.º 6
0
def printAllCyclicCodes(factorPolynomials):
    """Generates all cyclic codes that can be created from
    the given factor polynomials.
    (slide 28)
    Args:
        factorPolynomials: factor polynomials in a python array
    """
    s = ''
    product = np.array([])
    for i in range(0, len(factorPolynomials)):
        if i == 0:
            product = factorPolynomials[i]
        else:
            product = GF2.multPoly(product, factorPolynomials[i])
        s += '(' + GF2.polyToString(factorPolynomials[i]) + ') '
    print(s + '= ' + GF2.polyToString(product))
    print()

    numberCodes = 2**(len(factorPolynomials)) - 2
    n = degree(product)
    print('There are', numberCodes, 'different cyclic codes of length', n,
          'as')
    print('we can find', numberCodes,
          'different generator polynomials that are')
    print('the factors of', GF2.polyToString(product))
    print(np.bitwise_and(1, 3))

    print('Code <- Generator polynomial')
    for i in range(0, numberCodes):
        s = ''
        gp = np.array([])  # generator polynomial
        for j in range(0, len(factorPolynomials)):
            if np.bitwise_and(i + 1, 2**j) > 0:
                if s == '':
                    gp = factorPolynomials[j]
                else:
                    gp = GF2.multPoly(gp, factorPolynomials[j])
                s += '(' + GF2.polyToString(factorPolynomials[j]) + ')'

        print('Ccyc(' + str(n) + ', ' + str(degree(gp)) + ') <- g' +
              str(i + 1) + ' = ' + s + ' = ' + GF2.polyToString(gp))
Exemplo n.º 7
0
def printAllCyclicCodes(factorPolynomials):
    """Generates all cyclic codes that can be created from
    the given factor polynomials.
    (slide 28)
    Args:
        factorPolynomials: factor polynomials in a python array
    """
    s = ''
    product = np.array([])
    for i in range(0, len(factorPolynomials)):
        if i == 0:
            product = factorPolynomials[i]
        else:
            product = GF2.multPoly(product, factorPolynomials[i])
        s += '(' + GF2.polyToString(factorPolynomials[i]) + ') '
    print(s + '= ' + GF2.polyToString(product))
    print()

    numberCodes = 2**(len(factorPolynomials)) - 2
    n = degree(product)
    print('There are', numberCodes, 'different cyclic codes of length', n, 'as')
    print('we can find', numberCodes, 'different generator polynomials that are')
    print('the factors of', GF2.polyToString(product))
    print(np.bitwise_and(1, 3))

    print('Code <- Generator polynomial')
    for i in range(0, numberCodes):
        s = ''
        gp = np.array([]) # generator polynomial
        for j in range(0, len(factorPolynomials)):
            if np.bitwise_and(i+1, 2**j) > 0:
                if s =='':
                    gp = factorPolynomials[j]
                else:
                    gp = GF2.multPoly(gp, factorPolynomials[j])
                s += '(' + GF2.polyToString(factorPolynomials[j]) + ')'

        print('Ccyc(' + str(n) + ', ' + str(degree(gp)) + ') <- g' + str(i+1) + ' = ' + s + ' = ' + GF2.polyToString(gp))
Exemplo n.º 8
0
def encode(m, g, systematic = True):
    """Encoding of cyclic code (in systematic form)
    (slide 23)
    ATTENTION: Dangling zeros in returned codeword are cut away.
    """
    if systematic:
        r = degree(g) # r = n - k
        Xr = X(r) # X^(n-k)
        XrmX = GF2.multPoly(Xr, m) # X^(n-k) * m(X)
        p = GF2.modPoly(XrmX, g) # p(X) = (X^(n-k) * m(X)) mod g(X)
        c = GF2.addPoly(p, XrmX) # c(X) = p(X) + (X^(n-k) * m(X))
    else:
        c = GF2.multPoly(m, g)
    return c.astype(int)
Exemplo n.º 9
0
def encode(m, g, systematic=True):
    """Encoding of cyclic code (in systematic form)
    (slide 23)
    ATTENTION: Dangling zeros in returned codeword are cut away.
    """
    if systematic:
        r = degree(g)  # r = n - k
        Xr = X(r)  # X^(n-k)
        XrmX = GF2.multPoly(Xr, m)  # X^(n-k) * m(X)
        p = GF2.modPoly(XrmX, g)  # p(X) = (X^(n-k) * m(X)) mod g(X)
        c = GF2.addPoly(p, XrmX)  # c(X) = p(X) + (X^(n-k) * m(X))
    else:
        c = GF2.multPoly(m, g)
    return c.astype(int)
Exemplo n.º 10
0
def gToG(g, n, systematic = True, verbose = False):
    """Builds Generator Matrix G from given Generator Polynomial.
    (slide 25)
    Args:
        g: generator polynomial
        n: code length
        systematic: generator matrix in systematic form (default: True)
        verbose: verbose output on how to gain systematic form (default: False)
    Returns:
        Generator Matrix
    """
    k = n - degree(g)
    g = padEnd(g, n)
    G = np.empty([k, n])
    for i in range(0, k):
        G[i,:] = shift(g, i)

    # row additions to gain embedded identity matrix on right side
    # -> systematic form
    if systematic:
        G = makeSystematic(G, verbose)

    return G.astype(int)
Exemplo n.º 11
0
def gToG(g, n, systematic=True, verbose=False):
    """Builds Generator Matrix G from given Generator Polynomial.
    (slide 25)
    Args:
        g: generator polynomial
        n: code length
        systematic: generator matrix in systematic form (default: True)
        verbose: verbose output on how to gain systematic form (default: False)
    Returns:
        Generator Matrix
    """
    k = n - degree(g)
    g = padEnd(g, n)
    G = np.empty([k, n])
    for i in range(0, k):
        G[i, :] = shift(g, i)

    # row additions to gain embedded identity matrix on right side
    # -> systematic form
    if systematic:
        G = makeSystematic(G, verbose)

    return G.astype(int)
Exemplo n.º 12
0
 def k(self): # override
     return self.n() - degree(self.g())
Exemplo n.º 13
0
 def k(self): # override
     return self.n() - degree(self.g()) 
Exemplo n.º 14
0
    def decode(self, r, verbose=True):
        """Decode received polynomial r(X) using the Euclidean Algorithm.
        (slide 26)
        Args:
            r: received polynomial
            verbose: print the algorithm steps.
        """
        GF = self.GF()

        if verbose:
            print()
            print('Decode the received polynomial:')
            print('r(X) = ' + self.GF().polyToString(r))

        S = self.S(r, verbose)

        if verbose:
            print('The Euclidean algorithm is applied by constructing the ' + \
                  'following table:')

        ri, ti = GF.HCF(X(2 * self.t()), S, verbose)

        lamb = GF.monicMultiplier(ti)

        errorLocationPoly = GF.multPoly(lamb, ti)
        errorLocationPolyDerivative = GF.derivePoly(errorLocationPoly)
        errorEvalutationPoly = GF.multPoly(lamb, ri)

        if verbose:
            print(u'An element \u03BB \u2208 GF(' + str(GF.q()) +
                  ') is conveniently selected to multiply')
            print(
                u't_i(X) by, in order to convert it into a monic polynomial.')
            print(u'This value of \u03BB is \u03BB = ' +
                  GF.elementToString(lamb))
            print('Therefore:')
            print()
            print('Error location polynomial:')
            print(u'\u03C3(X) = \u03BB * t_i(X) = ' +
                  GF.elementToString(lamb) + '(' + GF.polyToString(ti) + ')')
            print('                  = ' + GF.polyToString(errorLocationPoly))
            print()
            print(u'\u03C3\'(X) = ' +
                  GF.polyToString(errorLocationPolyDerivative))
            print()
            print('Error evaluation polynomial:')
            print(u'W(X) = -\u03BB * r_i(X) = ' + GF.elementToString(lamb) +
                  ' * ' + GF.polyToString(ri))
            print('                   = ' +
                  GF.polyToString(errorEvalutationPoly))
            print()
            print(
                u'Performing Chien search in the error location polynomial \u03C3(X):'
            )
            print()

        errorLocations = []
        for i, root in enumerate(GF.roots(errorLocationPoly)):
            j = GF.elementToExp(GF.elementFromExp(-GF.elementToExp(root)))
            errorLocations.append(j)
            if verbose:
                print(u'\u03B1^(-j_' + str(i+1) + ') = ' + GF.elementToString(root) + \
                     '\t-> j_' + str(i+1) + ' = ' + str(j))

        if verbose:
            print('\nError values:')

        errorValues = []

        for i, errorLocation in enumerate(errorLocations):
            alpha = GF.elementFromExp(-errorLocation)
            res_W = GF.substituteElementIntoPoly(errorEvalutationPoly, alpha)
            res_o = GF.substituteElementIntoPoly(errorLocationPolyDerivative,
                                                 alpha)
            errorValue = GF.divElements(res_W, res_o)
            errorValues.append(errorValue)
            if verbose:
                print('e_j' + str(i+1) + ' = W(' + GF.elementToString(alpha) + \
                    u') / \u03C3\'(' + GF.elementToString(alpha) + ') = ' + \
                    GF.elementToString(res_W) + \
                    ' / ' + GF.elementToString(res_o) + ' = ' + \
                    GF.elementToString(errorValue))

        e = np.zeros(degree(r) + 1)
        for i, errorLocation in enumerate(errorLocations):
            errorValue = errorValues[i]
            e[errorLocation] = errorValue

        c = GF.addPoly(r, e)

        if verbose:
            print()
            print('Error polynomial:')
            print('e(X) = ' + GF.polyToString(e))
            print()
            print('Code vector:')
            print('c = r + e = ' + str(c))

        return c.astype(int)
Exemplo n.º 15
0
    def decode(self, r, verbose = True):
        """Decode received polynomial r(X) using the Euclidean Algorithm.
        (slide 26)
        Args:
            r: received polynomial
            verbose: print the algorithm steps.
        """
        GF = self.GF()

        if verbose:
            print()
            print('Decode the received polynomial:')
            print('r(X) = ' + self.GF().polyToString(r))

        S = self.S(r, verbose)

        if verbose:
            print('The Euclidean algorithm is applied by constructing the ' + \
                  'following table:')

        ri, ti = GF.HCF(X(2 * self.t()), S, verbose)

        lamb = GF.monicMultiplier(ti)

        errorLocationPoly = GF.multPoly(lamb, ti);
        errorLocationPolyDerivative = GF.derivePoly(errorLocationPoly)
        errorEvalutationPoly = GF.multPoly(lamb, ri);

        if verbose:
            print(u'An element \u03BB \u2208 GF(' + str(GF.q()) + ') is conveniently selected to multiply')
            print(u't_i(X) by, in order to convert it into a monic polynomial.')
            print(u'This value of \u03BB is \u03BB = ' + GF.elementToString(lamb))
            print('Therefore:')
            print()
            print('Error location polynomial:')
            print(u'\u03C3(X) = \u03BB * t_i(X) = ' + GF.elementToString(lamb) + '(' + GF.polyToString(ti) + ')')
            print('                  = ' + GF.polyToString(errorLocationPoly) )
            print()
            print(u'\u03C3\'(X) = ' + GF.polyToString(errorLocationPolyDerivative))
            print()
            print('Error evaluation polynomial:')
            print(u'W(X) = -\u03BB * r_i(X) = ' + GF.elementToString(lamb) + ' * ' + GF.polyToString(ri))
            print('                   = ' + GF.polyToString(errorEvalutationPoly) )
            print()
            print(u'Performing Chien search in the error location polynomial \u03C3(X):')
            print()

        errorLocations = []
        for i, root in enumerate(GF.roots(errorLocationPoly)):
            j = GF.elementToExp(GF.elementFromExp(-GF.elementToExp(root)))
            errorLocations.append(j)
            if verbose:
                print(u'\u03B1^(-j_' + str(i+1) + ') = ' + GF.elementToString(root) + \
                     '\t-> j_' + str(i+1) + ' = ' + str(j))

        if verbose:
            print('\nError values:')

        errorValues = []

        for i, errorLocation in enumerate(errorLocations):
            alpha = GF.elementFromExp(-errorLocation)
            res_W = GF.substituteElementIntoPoly(errorEvalutationPoly, alpha)
            res_o = GF.substituteElementIntoPoly(errorLocationPolyDerivative, alpha)
            errorValue = GF.divElements(res_W, res_o)
            errorValues.append(errorValue)
            if verbose:
                print('e_j' + str(i+1) + ' = W(' + GF.elementToString(alpha) + \
                    u') / \u03C3\'(' + GF.elementToString(alpha) + ') = ' + \
                    GF.elementToString(res_W) + \
                    ' / ' + GF.elementToString(res_o) + ' = ' + \
                    GF.elementToString(errorValue))

        e = np.zeros(degree(r)+1)
        for i, errorLocation in enumerate(errorLocations):
            errorValue = errorValues[i]
            e[errorLocation] = errorValue

        c = GF.addPoly(r, e)

        if verbose:
            print()
            print('Error polynomial:')
            print('e(X) = ' + GF.polyToString(e))
            print()
            print('Code vector:')
            print('c = r + e = ' + str(c))

        return c.astype(int)