Exemplo n.º 1
0
    def emissionLikelihood( self, x, ys ):
        # Compute P( y | x, ϴ )
        if( x.ndim == 2 ):
            # Multiple time steps
            if( ys.ndim == 2 ):
                assert x.shape[ 0 ] == ys.shape[ 0 ]
            else:
                # There are multiple measurements per latent state
                assert ys.ndim == 3
                assert x.shape[ 0 ] == ys.shape[ 1 ]

                # Put the time index in front
                ys = np.swapaxes( ys, 0, 1 )

            assert x.shape[ 0 ] == ys.shape[ 0 ]

            ans = 0.0
            for t, ( _x, _ys ) in enumerate( zip( x, ys ) ):
                ans += Normal.log_likelihood( _ys, nat_params=( -0.5 * self.J1Emiss, self._hy.dot( _x ) ) )
            return ans

        else:
            # Only 1 example.  I don't think this code will ever be called
            assert x.ndim == 1
            if( ys.ndim == 1 ):
                pass
            else:
                assert ys.ndim == 2

            return Normal.log_likelihood( _ys, nat_params=( -0.5 * self.J1Emiss, self._hy.dot( _x ) ) )
Exemplo n.º 2
0
    def preprocessData( self, ys, computeMarginal=True ):
        ys = np.array( ys )
        self._T = ys.shape[ 1 ]

        # Compute all of the emission probs here.  This just makes the code cleaner
        self.L = np.zeros( ( self.T, self.K ) )

        for k in range( self.K ):

            n1 = self.n1Emiss[ k ]
            n2 = self.n2Emiss[ k ]

            self.L[ :, k ] = Normal.log_likelihood( ys, nat_params=( n1, n2 ) ).sum( axis=0 )
Exemplo n.º 3
0
    def emissionProb( self, t, forward=False, ys=None ):

        if( ys is None ):
            emiss = self.L[ t ]
        else:
            emiss = np.zeros( self.K )

            for k in range( self.K ):

                n1 = self.n1Emiss[ k ]
                n2 = self.n2Emiss[ k ]

                emiss += Normal.log_likelihood( ys[ :, t ], nat_params=( n1, n2 ) ).sum( axis=0 )

        return emiss if forward == True else np.broadcast_to( emiss, ( self.K, self.K ) )
Exemplo n.º 4
0
    def preprocessData( self, xs, u=None, computeMarginal=True ):
        xs = np.array( xs )

        # Not going to use multiple measurements here
        assert xs.ndim == 2

        self._T = xs.shape[ 0 ]

        # Compute P( x_t | x_t-1, z ) for all of the observations over each z

        self.L0 = Normal.log_likelihood( xs[ 0 ], nat_params=( self.n1_0, self.n2_0 ) )

        self.L = np.empty( ( self.T - 1, self.K ) )

        for i, ( n1, n2, n3 ) in enumerate( zip( self.n1Trans, self.n2Trans, self.n3Trans ) ):

            def ll( _x ):
                x, x1 = np.split( _x, 2 )
                return Regression.log_likelihood( ( x, x1 ), nat_params=( n1, n2, n3 ) )

            self.L[ :, i ] = np.apply_along_axis( ll, -1, np.hstack( ( xs[ :-1 ], xs[ 1: ] ) ) )
Exemplo n.º 5
0
 def likelihoodStep( self, x, J, h ):
     return Normal.log_likelihood( x, params=Normal.natToStandard( J, h, fromPrecision=True ) )