from MLNPotential import MLNPotential, and_op, or_op, eq_op
import numpy as np

seed = 0
np.random.seed(seed)

from EPBPLogVersion import EPBP
from OneShot import OneShot

from hybrid_gaussian_mrf import convert_to_bn, block_gibbs_sample, get_crv_marg, get_drv_marg, \
    get_rv_marg_map_from_bn_params

domain_bool = Domain(values=(0, 1), continuous=False)
domain_real = Domain(values=(-10, 10), continuous=True)
rvs = [
    RV(domain=domain_bool),
    RV(domain=domain_bool),
    RV(domain=domain_real),
    RV(domain=domain_real)
]
Nc = 2
# covs = np.array([np.eye(Nc)] * len(rvs[0].values))
# means = np.array([[-2., -2.], [0., 1.], [3., 0.]])
# factors = [F(nb=(rvs[0], rvs[2], rvs[3]),
#              log_potential_fun=LogHybridQuadratic(A=-0.5 * covs,
#                                                   b=means,
#                                                   c=-0.5 * np.array([np.dot(m, m) for m in means]))),
#            F(nb=(rvs[0],), log_potential_fun=LogTable(np.array([-0.1, 0, 2.]))),
#            F(nb=(rvs[0], rvs[1]), log_potential_fun=LogTable(np.array([[2., 0], [-0.1, 1]]))),
#            F(nb=(rvs[2],), log_potential_fun=LogQuadratic(A=-0.5 * np.ones([1, 1]), b=np.zeros([1]), c=0.))
#            ]
Exemplo n.º 2
0
import utils

utils.set_path()
import sampling_utils

from Graph import F, RV, Domain, Graph
from Potential import LogTable, LogQuadratic, LogHybridQuadratic
import numpy as np

seed = 0
np.random.seed(0)
from hybrid_gaussian_mrf import convert_to_bn, block_gibbs_sample, get_crv_marg, get_drv_marg

rvs = [
    RV(domain=Domain(values=(0, 1, 2), continuous=False)),
    RV(domain=Domain(values=(0, 1), continuous=False)),
    RV(domain=Domain(values=(-5, 5), continuous=True)),
    RV(domain=Domain(values=(-5, 5), continuous=True))
]
Nc = 2
covs = np.array([np.eye(Nc)] * rvs[0].dstates)
# means = np.array([[0., 0.], [0., 1.], [1., 0.]])
means = np.array([[-2., -2.], [0., 1.], [3., 0.]])
factors = [
    F(nb=(rvs[0], rvs[2], rvs[3]),
      log_potential_fun=LogHybridQuadratic(
          A=-0.5 * covs,
          b=means,
          c=-0.5 * np.array([np.dot(m, m) for m in means]))),
    F(nb=(rvs[0], ), log_potential_fun=LogTable(np.array([-0.1, 0, 2.]))),
    F(nb=(rvs[0], rvs[1]),
Exemplo n.º 3
0
    # same as clausal form below
    # (lambda fxy, fyz, fxz: or_op(or_op(neg_op(fxy), neg_op(fyz)), fxz), 0.7),
    # (lambda sx, cx: or_op(neg_op(sx), cx), 1.5),
    # (lambda fxy, sx, sy: or_op(or_op(neg_op(fxy), neg_op(sx)), sy), 1.1)
]

# log_potential_funs = [utils.weighted_feature_fun(f, w) for (f, w) in KB]
potentials = [MLNPotential(formula=f, w=w) for (f, w) in KB]

# create the MN (ground MLN for constants={A, B})
N = 8
nodes = np.arange(
    N
)  # node ids; 0:F(A,A), 1:F(A,B), 2:S(A), 3:C(A), 4:F(B,B), 5:F(B,A), 6:S(B), 7:C(B)
rvs = [
    RV(domain=Domain(values=np.array([0, 1]), continuous=False)) for n in nodes
]
factors = [
    F(potential=potentials[1], nb=[rvs[i] for i in [0, 2, 2]]),
    F(potential=potentials[0], nb=[rvs[i] for i in [2, 3]]),
    F(potential=potentials[1], nb=[rvs[i] for i in [1, 2, 6]]),
    F(potential=potentials[1], nb=[rvs[i] for i in [5, 6, 2]]),
    F(potential=potentials[0], nb=[rvs[i] for i in [6, 7]]),
    F(potential=potentials[1], nb=[rvs[i] for i in [4, 6, 6]]),
]

g = Graph()
g.rvs = rvs
g.factors = factors
g.init_nb()
g.init_rv_indices()
# currently extract the log_potential_fun manually
def log_potential_fun(xs):
    x0, x1 = xs[0], xs[1]
    return 4 * (x0 == 1) * (x1 == 1) + 1 * (x0 == 1) * (x1 == 0) + 1 * (x0 == 0) * (x1 == 1) + 3 * (x0 == 0) * (
        x1 == 0)
    # return 4 * x0 * x1 + 3 * (1 - x0) * (1 - x1) + 1 * (x0 != x1)  # being clever in this case


# from MLNPotential import MLNPotential
# p1 = MLNPotential(formula=lambda xs: xs[0] * xs[1], w=1)

# d = Domain([True, False])
d = Domain([0, 1], continuous=False)

N = 4
rvs = [RV(d) for n in range(N)]
fs = [F(potential=p1, log_potential_fun=log_potential_fun, nb=(rvs[i], rvs[i + 1])) for i in range(N - 1)]
g = Graph()
g.rvs = rvs
g.factors = fs
g.init_nb()
utils.set_log_potential_funs(g.factors_list)  # OSI assumes factors have callable .log_potential_fun

cg = CompressedGraphSorted(g)
cg.run()

print(len(g.rvs), len(g.factors))
print(len(cg.rvs), len(cg.factors))

K = 2
T = 0
seed = 0
utils.set_seed(seed=seed)
utils.set_path()
from Graph import Domain, RV, F, Graph

# test = 'd'  # disc
# test = 'd2'  # disc
# test = 'c'  # cont
test = 'h'  # hybrid

N = 2
nodes = np.arange(N)

if test == 'd':
    rvs = [
        RV(domain=Domain(values=np.array([0, 1]), continuous=False))
        for n in nodes
    ]

    def lphi_0(xs):
        x = xs[0]
        return -0.2 * (xs[0] == 0) + 1 * (x == 1)

    def lphi_1(xs):
        x = xs[0]
        return 0.1 * (x == 0) + 0.2 * (x == 1)

    def lpsi(xs):
        x0 = xs[0]
        x1 = xs[1]
        return -1 * (x0 == 0) * (x1 == 0) + 1 * (x0 == 0) * (x1 == 1) + \