Exemplo n.º 1
0
                loss_epoch[idx] += print_loss

        logs.append_train_loss([x / total_step for x in loss_epoch])

        # validate by testing the CPC performance on the validation set
        if opt.validate:
            validation_loss = val_by_InfoNCELoss.val_by_InfoNCELoss(opt, model, test_loader)
            logs.append_val_loss(validation_loss)

        logs.create_log(model, epoch=epoch, optimizer=optimizer)


if __name__ == "__main__":

    opt = arg_parser.parse_args()
    arg_parser.create_log_path(opt)

    # set random seeds
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed(opt.seed)
    np.random.seed(opt.seed)
    random.seed(opt.seed)

    # load model
    model, optimizer = load_audio_model.load_model_and_optimizer(opt)

    # initialize logger
    logs = logger.Logger(opt)

    # get datasets and dataloaders
    train_loader, train_dataset, test_loader, test_dataset = get_dataloader.get_libri_dataloaders(
Exemplo n.º 2
0
        # calculate accuracy
        total += num_samples_per_speaker
        correct += (svm_output == target).sum()

        speaker_idx += 1

    accuracy = correct / total
    print("Testing Accuracy SVM: ", accuracy)
    return accuracy


if __name__ == "__main__":

    opt = arg_parser.parse_args()
    arg_parser.create_log_path(opt, add_path_var="linear_model")
    opt.SVM_training_samples = 20

    # Device configuration
    opt.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # random seeds
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed(opt.seed)
    np.random.seed(opt.seed)

    # load pretrained model
    context_model, _ = load_audio_model.load_model_and_optimizer(
        opt, reload_model=True
    )
    context_model.eval()