Exemplo n.º 1
0
def test_gridcal_regulator():
    """
    GridCal test for the new implementation of transformer voltage regulators.
    """
    grid = MultiCircuit(name=test_name)
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = list()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  #kV
        is_slack=True)
    grid.add_bus(POI)

    B_C3 = Bus(name="B_C3", vnom=10)  #kV
    grid.add_bus(B_C3)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  #kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  #kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = ControlledGenerator(name="Utility")
    UT.bus = POI
    grid.add_controlled_generator(POI, UT)

    # Create static generators (with fixed power factor)
    M32 = StaticGenerator(name="M32", power=4.2 + 0.0j)  # MVA (complex)
    M32.bus = B_LV_M32
    grid.add_static_generator(B_LV_M32, M32)

    # Create transformer types
    s = 100  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,  # MVA
        copper_losses=get_complex(z, xr).real * s * 1000 / Sbase,  # kW
        iron_losses=125,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)  # %
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,  # MVA
        copper_losses=get_complex(z, xr).real * s * 1000 / Sbase,  # kW
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)  # %
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_C3,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS,
                  bus_to_regulated=True,
                  vset=1.05)
    X_C3.tap_changer = TapChanger(taps_up=16,
                                  taps_down=16,
                                  max_reg=1.1,
                                  min_reg=0.9)
    X_C3.tap_changer.set_tap(X_C3.tap_module)
    grid.add_branch(X_C3)

    C_M32 = Branch(bus_from=B_C3,
                   bus_to=B_MV_M32,
                   name="C_M32",
                   r=7.84,
                   x=1.74)
    grid.add_branch(C_M32)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    grid.compile()
    options = PowerFlowOptions(SolverType.LM,
                               verbose=True,
                               robust=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=True,
                               control_taps=True,
                               tolerance=1e-6,
                               max_iter=99)

    power_flow = PowerFlowMP(grid, options)
    power_flow.run()

    approx_volt = [round(100 * abs(v), 1) for v in power_flow.results.voltage]
    solution = [100.0, 105.2, 130.0, 130.1]  # Expected solution from GridCal

    print()
    print(f"Test: {test_name}")
    print(f"Results:  {approx_volt}")
    print(f"Solution: {solution}")
    print()

    print("Controlled generators:")
    for g in grid.get_controlled_generators():
        print(f" - Generator {g}: q_min={g.Qmin}pu, q_max={g.Qmax}pu")
    print()

    print("Branches:")
    for b in grid.branches:
        print(
            f" - {b}: R={round(b.R, 4)}pu, X={round(b.X, 4)}pu, X/R={round(b.X/b.R, 1)}, vset={b.vset}"
        )
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(
            f" - {t}: Copper losses={int(t.Copper_losses)}kW, Iron losses={int(t.Iron_losses)}kW, SC voltage={t.Short_circuit_voltage}%"
        )
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(
            f" - {grid.branches[i]}: losses={round(power_flow.results.losses[i], 3)} MVA"
        )
    print()

    print(f"Voltage settings: {grid.numerical_circuit.vset}")

    #print("GridCal logger:")
    #for l in grid.logger:
    #print(f" - {l}")

    equal = True
    for i in range(len(approx_volt)):
        if approx_volt[i] != solution[i]:
            equal = False

    assert equal
Exemplo n.º 2
0
def test_xfo_static_tap_3():
    """
    Basic test with the main transformer's  HV tap (X_C3) set at -2.5%
    (0.975 pu), which raises the LV by the same amount (+2.5%).
    """
    grid = MultiCircuit(name=test_name)
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = list()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  # kV
        is_slack=True)
    grid.add_bus(POI)

    B_C3 = Bus(name="B_C3", vnom=10)  # kV
    grid.add_bus(B_C3)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  # kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  # kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = ControlledGenerator(name="Utility")
    UT.bus = POI
    grid.add_controlled_generator(POI, UT)

    # Create static generators (with fixed power factor)
    M32 = StaticGenerator(name="M32", power=4.2 + 0.0j)  # MVA (complex)
    M32.bus = B_LV_M32
    grid.add_static_generator(B_LV_M32, M32)

    # Create transformer types
    s = 5  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,
        copper_losses=complexe(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,
        copper_losses=complexe(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_C3,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS,
                  tap=0.975)
    # update to a more precise tap changer
    X_C3.apply_tap_changer(
        TapChanger(taps_up=20, taps_down=20, max_reg=1.1, min_reg=0.9))
    grid.add_branch(X_C3)

    C_M32 = Branch(bus_from=B_C3,
                   bus_to=B_MV_M32,
                   name="C_M32",
                   r=0.784,
                   x=0.174)
    grid.add_branch(C_M32)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    grid.compile()
    options = PowerFlowOptions(SolverType.NR,
                               verbose=True,
                               robust=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=True,
                               control_taps=True,
                               tolerance=1e-6,
                               max_iter=15)

    power_flow = PowerFlow(grid, options)
    power_flow.run()

    print()
    print(f"Test: {test_name}")
    print()

    print("Controlled generators:")
    for g in grid.get_controlled_generators():
        print(f" - Generator {g}: q_min={g.Qmin} MVAR, q_max={g.Qmax} MVAR")
    print()

    print("Branches:")
    for b in grid.branches:
        print(f" - {b}:")
        print(f"   R = {round(b.R, 4)} pu")
        print(f"   X = {round(b.X, 4)} pu")
        print(f"   X/R = {round(b.X/b.R, 1)}")
        print(f"   G = {round(b.G, 4)} pu")
        print(f"   B = {round(b.B, 4)} pu")
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(
            f" - {t}: Copper losses={int(t.Copper_losses)}kW, "
            f"Iron losses={int(t.Iron_losses)}kW, SC voltage={t.Short_circuit_voltage}%"
        )
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(
            f" - {grid.branches[i]}: losses={1000*round(power_flow.results.losses[i], 3)} kVA"
        )
    print()

    equal = False
    for i, branch in enumerate(grid.branches):
        if branch.name == "X_C3":
            equal = power_flow.results.tap_module[i] == branch.tap_module

    if not equal:
        grid.export_pf(f"{test_name}_results.xlsx", power_flow.results)
        grid.save_excel(f"{test_name}_grid.xlsx")

    assert equal
Exemplo n.º 3
0
def test_pv_1():
    """
    Voltage controlled generator test, also useful for a basic tutorial. In this
    case the generator M32 regulates the voltage at a setpoint of 1.025 pu, and
    the slack bus (POI) regulates it at 1.0 pu.

    The transformers' magnetizing branch losses are considered, but their
    voltage regulators aren't.
    """
    grid = MultiCircuit(name=test_name)
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = list()

    # Create buses
    POI = Bus(name="POI",
              vnom=100, #kV
              is_slack=True)
    grid.add_bus(POI)

    B_MV_M32 = Bus(name="B_MV_M32",
                   vnom=10) #kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32",
                   vnom=0.6) #kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = ControlledGenerator(name="Utility")
    UT.bus = POI
    grid.add_controlled_generator(POI, UT)

    M32 = ControlledGenerator(name="M32",
                              active_power=4.2,
                              voltage_module=1.025,
                              Qmin=-2.5,
                              Qmax=2.5)
    M32.bus = B_LV_M32
    grid.add_controlled_generator(B_LV_M32, M32)

    # Create transformer types
    s = 100 # MVA
    z = 8 # %
    xr = 40
    SS = TransformerType(name="SS",
                         hv_nominal_voltage=100, # kV
                         lv_nominal_voltage=10, # kV
                         nominal_power=s,
                         copper_losses=complexe(z, xr).real*s*1000/Sbase,
                         iron_losses=125, # kW
                         no_load_current=0.5, # %
                         short_circuit_voltage=z)
    grid.add_transformer_type(SS)

    s = 5 # MVA
    z = 6 # %
    xr = 20
    PM = TransformerType(name="PM",
                         hv_nominal_voltage=10, # kV
                         lv_nominal_voltage=0.6, # kV
                         nominal_power=s,
                         copper_losses=complexe(z, xr).real*s*1000/Sbase,
                         iron_losses=6.25, # kW
                         no_load_current=0.5, # %
                         short_circuit_voltage=z)
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_MV_M32,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS)
    grid.add_branch(X_C3)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    grid.compile()
    options = PowerFlowOptions(SolverType.LM,
                               verbose=True,
                               robust=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=True,
                               tolerance=1e-6,
                               max_iter=99)

    power_flow = PowerFlow(grid, options)
    power_flow.run()

    approx_volt = [round(100*abs(v), 1) for v in power_flow.results.voltage]
    solution = [100.0, 100.1, 102.5] # Expected solution from GridCal and ETAP 16.1.0, for reference

    print()
    print(f"Test: {test_name}")
    print(f"Results:  {approx_volt}")
    print(f"Solution: {solution}")
    print()

    print("Controlled generators:")
    for g in grid.get_controlled_generators():
        print(f" - Generator {g}: q_min={g.Qmin}pu, q_max={g.Qmax}pu")
    print()

    print("Branches:")
    for b in grid.branches:
        print(f" - {b}:")
        print(f"   R = {round(b.R, 4)} pu")
        print(f"   X = {round(b.X, 4)} pu")
        print(f"   X/R = {round(b.X/b.R, 1)}")
        print(f"   G = {round(b.G, 4)} pu")
        print(f"   B = {round(b.B, 4)} pu")
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(f" - {t}: Copper losses={int(t.Copper_losses)}kW, Iron losses={int(t.Iron_losses)}kW, SC voltage={t.Short_circuit_voltage}%")
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(f" - {grid.branches[i]}: losses={1000*round(power_flow.results.losses[i], 3)} kVA")
    print()

    equal = True
    for i in range(len(approx_volt)):
        if approx_volt[i] != solution[i]:
            equal = False

    assert equal
Exemplo n.º 4
0
    def __init__(self, multi_circuit: MultiCircuit, verbose=False):

        ################################################################################################################
        # Compilation
        ################################################################################################################

        self.verbose = verbose

        self.multi_circuit = multi_circuit

        self.numerical_circuit = self.multi_circuit.compile()

        self.islands = self.numerical_circuit.compute()

        # indices of generators that contribute to the static power vector 'S'
        self.gen_s_idx = np.where((np.logical_not(self.numerical_circuit.controlled_gen_dispatchable)
                                   * self.numerical_circuit.controlled_gen_enabled) == True)[0]

        self.bat_s_idx = np.where((np.logical_not(self.numerical_circuit.battery_dispatchable)
                                   * self.numerical_circuit.battery_enabled) == True)[0]

        # indices of generators that are to be optimized via the solution vector 'x'
        self.gen_x_idx = np.where((self.numerical_circuit.controlled_gen_dispatchable
                                   * self.numerical_circuit.controlled_gen_enabled) == True)[0]

        self.bat_x_idx = np.where((self.numerical_circuit.battery_dispatchable
                                   * self.numerical_circuit.battery_enabled) == True)[0]

        # compute the problem dimension
        dim = len(self.gen_x_idx) + len(self.bat_x_idx)

        # get the limits of the devices to control
        gens = np.array(multi_circuit.get_controlled_generators())
        bats = np.array(multi_circuit.get_batteries())
        gen_x_up = np.array([elm.Pmax for elm in gens[self.gen_x_idx]])
        gen_x_low = np.array([elm.Pmin for elm in gens[self.gen_x_idx]])
        bat_x_up = np.array([elm.Pmax for elm in bats[self.bat_x_idx]])
        bat_x_low = np.array([elm.Pmin for elm in bats[self.bat_x_idx]])

        # form S static ################################################################################################

        # all the loads apply
        self.Sfix = self.numerical_circuit.C_load_bus.T * (
                    - self.numerical_circuit.load_power / self.numerical_circuit.Sbase * self.numerical_circuit.load_enabled)

        # static generators (all apply)
        self.Sfix += self.numerical_circuit.C_sta_gen_bus.T * (
                    self.numerical_circuit.static_gen_power / self.numerical_circuit.Sbase * self.numerical_circuit.static_gen_enabled)

        # controlled generators
        self.Sfix += (self.numerical_circuit.C_ctrl_gen_bus[self.gen_s_idx, :]).T * (
                    self.numerical_circuit.controlled_gen_power[self.gen_s_idx] / self.numerical_circuit.Sbase)

        # batteries
        self.Sfix += (self.numerical_circuit.C_batt_bus[self.bat_s_idx, :]).T * (
                    self.numerical_circuit.battery_power[self.bat_s_idx] / self.numerical_circuit.Sbase)

        # build A_sys per island #######################################################################################
        for island in self.islands:
            island.build_linear_ac_sys_mat()  # builds the A matrix factorization and stores it internally

        ################################################################################################################
        # internal variables for PySOT
        ################################################################################################################
        self.xlow = np.r_[gen_x_low, bat_x_low] / self.multi_circuit.Sbase
        self.xup = np.r_[gen_x_up, bat_x_up] / self.multi_circuit.Sbase
        self.dim = dim
        self.info = str(dim) + "-dimensional OPF problem"
        self.min = 0
        self.integer = []
        self.continuous = np.arange(0, dim)
        check_opt_prob(self)
Exemplo n.º 5
0
def test_xfo_static_tap_1():
    """
    Basic test with the main transformer's  HV tap (X_C3) set at +5% (1.05 pu),
    which lowers the LV by the same amount (-5%).
    """
    grid = MultiCircuit(name=test_name)
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = list()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  #kV
        is_slack=True)
    grid.add_bus(POI)

    B_C3 = Bus(name="B_C3", vnom=10)  #kV
    grid.add_bus(B_C3)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  #kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  #kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = ControlledGenerator(name="Utility")
    UT.bus = POI
    grid.add_controlled_generator(POI, UT)

    # Create static generators (with fixed power factor)
    M32 = StaticGenerator(name="M32", power=4.2 + 0.0j)  # MVA (complex)
    M32.bus = B_LV_M32
    grid.add_static_generator(B_LV_M32, M32)

    # Create transformer types
    s = 5  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,
        copper_losses=complexe(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,
        copper_losses=complexe(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_C3,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS,
                  tap=1.05)
    grid.add_branch(X_C3)

    C_M32 = Branch(bus_from=B_C3,
                   bus_to=B_MV_M32,
                   name="C_M32",
                   r=0.784,
                   x=0.174)
    grid.add_branch(C_M32)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    grid.compile()
    options = PowerFlowOptions(SolverType.LM,
                               verbose=True,
                               robust=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=True,
                               tolerance=1e-6,
                               max_iter=99)

    power_flow = PowerFlow(grid, options)
    power_flow.run()

    approx_volt = [round(100 * abs(v), 1) for v in power_flow.results.voltage]
    solution = [100.0, 94.7, 98.0, 98.1]  # Expected solution from GridCal

    print()
    print(f"Test: {test_name}")
    print(f"Results:  {approx_volt}")
    print(f"Solution: {solution}")
    print()

    print("Controlled generators:")
    for g in grid.get_controlled_generators():
        print(f" - Generator {g}: q_min={g.Qmin} MVAR, q_max={g.Qmax} MVAR")
    print()

    print("Branches:")
    for b in grid.branches:
        print(f" - {b}:")
        print(f"   R = {round(b.R, 4)} pu")
        print(f"   X = {round(b.X, 4)} pu")
        print(f"   X/R = {round(b.X/b.R, 1)}")
        print(f"   G = {round(b.G, 4)} pu")
        print(f"   B = {round(b.B, 4)} pu")
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(
            f" - {t}: Copper losses={int(t.Copper_losses)}kW, Iron losses={int(t.Iron_losses)}kW, SC voltage={t.Short_circuit_voltage}%"
        )
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(
            f" - {grid.branches[i]}: losses={1000*round(power_flow.results.losses[i], 3)} kVA"
        )
    print()

    equal = True
    for i in range(len(approx_volt)):
        if approx_volt[i] != solution[i]:
            equal = False

    assert equal
Exemplo n.º 6
0
def test_basic():
    """
    Basic GridCal test, also useful for a basic tutorial. In this case the
    magnetizing branch of the transformers is neglected by inputting 1e-20
    excitation current and iron core losses.
    The results are identical to ETAP's, which always uses this assumption in
    balanced load flow calculations.
    """
    grid = MultiCircuit(name=test_name)
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = list()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  #kV
        is_slack=True)
    grid.add_bus(POI)

    B_C3 = Bus(name="B_C3", vnom=10)  #kV
    grid.add_bus(B_C3)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  #kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  #kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = ControlledGenerator(name="Utility")
    UT.bus = POI
    grid.add_controlled_generator(POI, UT)

    # Create static generators (with fixed power factor)
    M32 = StaticGenerator(name="M32", power=4.2 + 0.0j)  # MVA (complex)
    M32.bus = B_LV_M32
    grid.add_static_generator(B_LV_M32, M32)

    # Create transformer types
    s = 5  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,
        copper_losses=complexe(z, xr).real * s * 1000 / Sbase,
        iron_losses=1e-20,
        no_load_current=1e-20,
        short_circuit_voltage=z)
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,
        copper_losses=complexe(z, xr).real * s * 1000 / Sbase,
        iron_losses=1e-20,
        no_load_current=1e-20,
        short_circuit_voltage=z)
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_C3,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS)
    grid.add_branch(X_C3)

    C_M32 = Branch(bus_from=B_C3,
                   bus_to=B_MV_M32,
                   name="C_M32",
                   r=0.784,
                   x=0.174)
    grid.add_branch(C_M32)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    grid.compile()
    options = PowerFlowOptions(SolverType.LM,
                               verbose=True,
                               robust=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=True,
                               tolerance=1e-6,
                               max_iter=99)

    power_flow = PowerFlow(grid, options)
    power_flow.run()

    approx_volt = [round(100 * abs(v), 1) for v in power_flow.results.voltage]
    solution = [
        100.0, 99.6, 102.7, 102.9
    ]  # Expected solution from GridCal and ETAP 16.1.0, for reference

    print()
    print(f"Test: {test_name}")
    print(f"Results:  {approx_volt}")
    print(f"Solution: {solution}")
    print()

    print("Controlled generators:")
    for g in grid.get_controlled_generators():
        print(f" - Generator {g}: q_min={g.Qmin}pu, q_max={g.Qmax}pu")
    print()

    print("Branches:")
    for b in grid.branches:
        print(f" - {b}:")
        print(f"   R = {round(b.R, 4)} pu")
        print(f"   X = {round(b.X, 4)} pu")
        print(f"   X/R = {round(b.X/b.R, 1)}")
        print(f"   G = {round(b.G, 4)} pu")
        print(f"   B = {round(b.B, 4)} pu")
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(
            f" - {t}: Copper losses={int(t.Copper_losses)}kW, Iron losses={int(t.Iron_losses)}kW, SC voltage={t.Short_circuit_voltage}%"
        )
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(
            f" - {grid.branches[i]}: losses={1000*round(power_flow.results.losses[i], 3)} kVA"
        )
    print()

    equal = True
    for i in range(len(approx_volt)):
        if approx_volt[i] != solution[i]:
            equal = False

    assert equal
Exemplo n.º 7
0
    def __init__(self, multi_circuit: MultiCircuit, options: PowerFlowOptions, verbose=False, break_at_value=True,
                 good_enough_value=0):

        self.break_at_value = break_at_value
        self.good_enough_value = good_enough_value

        self.multi_circuit = multi_circuit

        self.numerical_circuit = self.multi_circuit.compile()

        self.calculation_inputs = self.numerical_circuit.compute(add_storage=False, add_generation=True)

        self.pf = PowerFlowMP(self.multi_circuit, options)

        # indices of generators that contribute to the static power vector 'S'
        self.gen_s_idx = np.where((np.logical_not(self.numerical_circuit.controlled_gen_dispatchable)
                                   * self.numerical_circuit.controlled_gen_enabled) == True)[0]

        self.bat_s_idx = np.where((np.logical_not(self.numerical_circuit.battery_dispatchable)
                                   * self.numerical_circuit.battery_enabled) == True)[0]

        # indices of generators that are to be optimized via the solution vector 'x'
        self.gen_x_idx = np.where((self.numerical_circuit.controlled_gen_dispatchable
                                   * self.numerical_circuit.controlled_gen_enabled) == True)[0]

        self.bat_x_idx = np.where((self.numerical_circuit.battery_dispatchable
                                   * self.numerical_circuit.battery_enabled) == True)[0]

        self.n_batteries = len(self.numerical_circuit.battery_power)
        self.n_controlled_gen = len(self.numerical_circuit.controlled_gen_power)

        # compute the problem dimension
        self.dim = len(self.gen_x_idx) + len(self.bat_x_idx)

        # get the limits of the devices to control
        gens = np.array(multi_circuit.get_controlled_generators())
        bats = np.array(multi_circuit.get_batteries())
        gen_x_up = np.array([elm.Pmax for elm in gens[self.gen_x_idx]])
        gen_x_low = np.array([elm.Pmin for elm in gens[self.gen_x_idx]])
        bat_x_up = np.array([elm.Pmax for elm in bats[self.bat_x_idx]])
        bat_x_low = np.array([elm.Pmin for elm in bats[self.bat_x_idx]])

        self.ngen = len(self.gen_x_idx)

        self.xlow = np.r_[gen_x_low, bat_x_low] / self.multi_circuit.Sbase
        self.xup = np.r_[gen_x_up, bat_x_up] / self.multi_circuit.Sbase
        self.range = self.xup - self.xlow

        # form S static ################################################################################################

        # all the loads apply
        self.Sfix = None
        self.set_default_state()  # build Sfix

        self.Vbus = np.ones(self.numerical_circuit.nbus, dtype=complex)
        self.Ibus = np.zeros(self.numerical_circuit.nbus, dtype=complex)

        # other vars needed ############################################################################################

        self.converged = False

        self.result = None

        self.force_batteries_to_charge = False

        self.x = np.zeros(self.dim)

        self.fx = 0

        self.t = 0

        self.Emin = None
        self.Emax = None
        self.E = None
        self.bat_idx = None
        self.battery_loading_pu = 0.01
        self.dt = 0