def test_gridcal_regulator():
    """
    GridCal test for the new implementation of transformer voltage regulators.
    """
    test_name = "test_gridcal_regulator"
    grid = MultiCircuit(name=test_name)
    grid.Sbase = 100.0  # MVA
    grid.time_profile = None
    grid.logger = Logger()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  # kV
        is_slack=True)
    grid.add_bus(POI)

    B_C3 = Bus(name="B_C3", vnom=10)  # kV
    grid.add_bus(B_C3)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  # kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  # kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = Generator(name="Utility")
    UT.bus = POI
    grid.add_generator(POI, UT)

    # Create static generators (with fixed power factor)
    M32 = StaticGenerator(name="M32", P=4.2, Q=0.0)  # MVA (complex)
    M32.bus = B_LV_M32
    grid.add_static_generator(B_LV_M32, M32)

    # Create transformer types
    s = 100  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,  # MVA
        copper_losses=complex_impedance(z, xr).real * s * 1000.0 /
        grid.Sbase,  # kW
        iron_losses=125,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)  # %
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,  # MVA
        copper_losses=complex_impedance(z, xr).real * s * 1000.0 /
        grid.Sbase,  # kW
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)  # %
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_C3,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS,
                  bus_to_regulated=True,
                  vset=1.05)
    X_C3.tap_changer = TapChanger(taps_up=16,
                                  taps_down=16,
                                  max_reg=1.1,
                                  min_reg=0.9)
    X_C3.tap_changer.set_tap(X_C3.tap_module)
    grid.add_branch(X_C3)

    C_M32 = Branch(bus_from=B_C3,
                   bus_to=B_MV_M32,
                   name="C_M32",
                   r=7.84,
                   x=1.74)
    grid.add_branch(C_M32)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    options = PowerFlowOptions(SolverType.NR,
                               verbose=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=ReactivePowerControlMode.Direct,
                               control_taps=TapsControlMode.Direct,
                               tolerance=1e-6,
                               max_iter=99)

    power_flow = PowerFlowDriver(grid, options)
    power_flow.run()

    approx_volt = [round(100 * abs(v), 1) for v in power_flow.results.voltage]
    solution = [100.0, 105.2, 130.0, 130.1]  # Expected solution from GridCal

    print()
    print(f"Test: {test_name}")
    print(f"Results:  {approx_volt}")
    print(f"Solution: {solution}")
    print()

    print("Generators:")
    for g in grid.get_generators():
        print(f" - Generator {g}: q_min={g.Qmin}pu, q_max={g.Qmax}pu")
    print()

    print("Branches:")
    branches = grid.get_branches()
    for b in grid.transformers2w:
        print(
            f" - {b}: R={round(b.R, 4)}pu, X={round(b.X, 4)}pu, X/R={round(b.X/b.R, 1)}, vset={b.vset}"
        )
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(
            f" - {t}: Copper losses={int(t.Pcu)}kW, Iron losses={int(t.Pfe)}kW, SC voltage={t.Vsc}%"
        )
    print()

    print("Losses:")
    for i in range(len(branches)):
        print(
            f" - {branches[i]}: losses={round(power_flow.results.losses[i], 3)} MVA"
        )
    print()

    tr_vset = [tr.vset for tr in grid.transformers2w]
    print(f"Voltage settings: {tr_vset}")

    equal = np.isclose(approx_volt, solution, atol=1e-3).all()

    assert equal
def test_xfo_static_tap_3():
    """
    Basic test with the main transformer's  HV tap (X_C3) set at -2.5%
    (0.975 pu), which raises the LV by the same amount (+2.5%).
    """
    test_name = "test_xfo_static_tap_3"
    grid = MultiCircuit(name=test_name)
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = Logger()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  # kV
        is_slack=True)
    grid.add_bus(POI)

    B_C3 = Bus(name="B_C3", vnom=10)  # kV
    grid.add_bus(B_C3)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  # kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  # kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = Generator(name="Utility")
    UT.bus = POI
    grid.add_generator(POI, UT)

    # Create static generators (with fixed power factor)
    M32 = StaticGenerator(name="M32", P=4.2, Q=0.0)  # MVA (complex)
    M32.bus = B_LV_M32
    grid.add_static_generator(B_LV_M32, M32)

    # Create transformer types
    s = 5  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,
        copper_losses=complex_impedance(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,
        copper_losses=complex_impedance(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_C3,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS,
                  tap=0.975)
    # update to a more precise tap changer
    X_C3.apply_tap_changer(
        TapChanger(taps_up=20, taps_down=20, max_reg=1.1, min_reg=0.9))
    grid.add_branch(X_C3)

    C_M32 = Branch(bus_from=B_C3,
                   bus_to=B_MV_M32,
                   name="C_M32",
                   r=0.784,
                   x=0.174)
    grid.add_branch(C_M32)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    options = PowerFlowOptions(SolverType.NR,
                               verbose=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=ReactivePowerControlMode.Direct,
                               tolerance=1e-6,
                               max_iter=15)

    power_flow = PowerFlowDriver(grid, options)
    power_flow.run()

    print()
    print(f"Test: {test_name}")
    print()

    print("Generators:")
    for g in grid.get_generators():
        print(f" - Generator {g}: q_min={g.Qmin} MVAR, q_max={g.Qmax} MVAR")
    print()

    print("Branches:")
    for b in grid.branches:
        print(f" - {b}:")
        print(f"   R = {round(b.R, 4)} pu")
        print(f"   X = {round(b.X, 4)} pu")
        print(f"   X/R = {round(b.X/b.R, 1)}")
        print(f"   G = {round(b.G, 4)} pu")
        print(f"   B = {round(b.B, 4)} pu")
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(f" - {t}: Copper losses={int(t.Pcu)}kW, "
              f"Iron losses={int(t.Pfe)}kW, SC voltage={t.Vsc}%")
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(
            f" - {grid.branches[i]}: losses={1000*round(power_flow.results.losses[i], 3)} kVA"
        )
    print()

    equal = False
    for i, branch in enumerate(grid.branches):
        if branch.name == "X_C3":
            equal = power_flow.results.tap_module[i] == branch.tap_module

    if not equal:
        grid.export_pf(f"{test_name}_results.xlsx", power_flow.results)
        grid.save_excel(f"{test_name}_grid.xlsx")

    assert equal
def test_pv_3():
    """
    Voltage controlled generator test, also useful for a basic tutorial. In this
    case the generator M32 regulates the voltage at a setpoint of 1.025 pu, and
    the slack bus (POI) regulates it at 1.0 pu.

    The transformers' magnetizing branch losses are considered, as well as the
    main power transformer's voltage regulator (X_C3) which regulates bus
    B_MV_M32 at 1.005 pu.

    In addition, the iterative PV control method is used instead of the usual
    (faster) method.
    """
    test_name = "test_pv_3"
    grid = MultiCircuit(name=test_name)
    Sbase = 100  # MVA
    grid.Sbase = Sbase
    grid.time_profile = None
    grid.logger = Logger()

    # Create buses
    POI = Bus(
        name="POI",
        vnom=100,  # kV
        is_slack=True)
    grid.add_bus(POI)

    B_MV_M32 = Bus(name="B_MV_M32", vnom=10)  # kV
    grid.add_bus(B_MV_M32)

    B_LV_M32 = Bus(name="B_LV_M32", vnom=0.6)  # kV
    grid.add_bus(B_LV_M32)

    # Create voltage controlled generators (or slack, a.k.a. swing)
    UT = Generator(name="Utility")
    UT.bus = POI
    grid.add_generator(POI, UT)

    M32 = Generator(name="M32",
                    active_power=4.2,
                    voltage_module=1.025,
                    Qmin=-2.5,
                    Qmax=2.5)
    M32.bus = B_LV_M32
    grid.add_generator(B_LV_M32, M32)

    # Create transformer types
    s = 100  # MVA
    z = 8  # %
    xr = 40
    SS = TransformerType(
        name="SS",
        hv_nominal_voltage=100,  # kV
        lv_nominal_voltage=10,  # kV
        nominal_power=s,
        copper_losses=complex_impedance(z, xr).real * s * 1000 / Sbase,
        iron_losses=125,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(SS)

    s = 5  # MVA
    z = 6  # %
    xr = 20
    PM = TransformerType(
        name="PM",
        hv_nominal_voltage=10,  # kV
        lv_nominal_voltage=0.6,  # kV
        nominal_power=s,
        copper_losses=complex_impedance(z, xr).real * s * 1000 / Sbase,
        iron_losses=6.25,  # kW
        no_load_current=0.5,  # %
        short_circuit_voltage=z)
    grid.add_transformer_type(PM)

    # Create branches
    X_C3 = Branch(bus_from=POI,
                  bus_to=B_MV_M32,
                  name="X_C3",
                  branch_type=BranchType.Transformer,
                  template=SS,
                  bus_to_regulated=True,
                  vset=1.005)
    X_C3.tap_changer = TapChanger(taps_up=16,
                                  taps_down=16,
                                  max_reg=1.1,
                                  min_reg=0.9)
    X_C3.tap_changer.set_tap(X_C3.tap_module)
    grid.add_branch(X_C3)

    X_M32 = Branch(bus_from=B_MV_M32,
                   bus_to=B_LV_M32,
                   name="X_M32",
                   branch_type=BranchType.Transformer,
                   template=PM)
    grid.add_branch(X_M32)

    # Apply templates (device types)
    grid.apply_all_branch_types()

    print("Buses:")
    for i, b in enumerate(grid.buses):
        print(f" - bus[{i}]: {b}")
    print()

    options = PowerFlowOptions(SolverType.LM,
                               verbose=True,
                               initialize_with_existing_solution=True,
                               multi_core=True,
                               control_q=ReactivePowerControlMode.Iterative,
                               control_taps=TapsControlMode.Direct,
                               tolerance=1e-6,
                               max_iter=99)

    power_flow = PowerFlowDriver(grid, options)
    power_flow.run()

    approx_volt = [round(100 * abs(v), 1) for v in power_flow.results.voltage]
    solution = [100.0, 100.7, 102.5]  # Expected solution from GridCal

    print()
    print(f"Test: {test_name}")
    print(f"Results:  {approx_volt}")
    print(f"Solution: {solution}")
    print()

    print("Generators:")
    for g in grid.get_generators():
        print(f" - Generator {g}: q_min={g.Qmin} MVAR, q_max={g.Qmax} MVAR")
    print()

    print("Branches:")
    for b in grid.branches:
        print(f" - {b}:")
        print(f"   R = {round(b.R, 4)} pu")
        print(f"   X = {round(b.X, 4)} pu")
        print(f"   X/R = {round(b.X / b.R, 1)}")
        print(f"   G = {round(b.G, 4)} pu")
        print(f"   B = {round(b.B, 4)} pu")
    print()

    print("Transformer types:")
    for t in grid.transformer_types:
        print(
            f" - {t}: Copper losses={int(t.Pcu)}kW, Iron losses={int(t.Pfe)}kW, SC voltage={t.Vsc}%"
        )
    print()

    print("Losses:")
    for i in range(len(grid.branches)):
        print(
            f" - {grid.branches[i]}: losses={1000 * round(power_flow.results.losses[i], 3)} kVA"
        )
    print()

    equal = True
    for i in range(len(approx_volt)):
        if approx_volt[i] != solution[i]:
            equal = False

    assert equal