Exemplo n.º 1
0
    def setUp(self):
        """
        Prepare to compare the models by initializing and solving them
        """
        # Set up and solve infinite type

        # Define a test dictionary that should have the same solution in the
        # perfect foresight and idiosyncratic shocks models.
        test_dictionary = deepcopy(init_idiosyncratic_shocks)
        test_dictionary["LivPrb"] = [1.0]
        test_dictionary["DiscFac"] = 0.955
        test_dictionary["PermGroFac"] = [1.0]
        test_dictionary["PermShkStd"] = [0.0]
        test_dictionary["TranShkStd"] = [0.0]
        test_dictionary["UnempPrb"] = 0.0
        test_dictionary["T_cycle"] = 1
        test_dictionary["T_retire"] = 0
        test_dictionary["BoroCnstArt"] = None

        InfiniteType = IndShockConsumerType(**test_dictionary)
        InfiniteType.cycles = 0

        InfiniteType.update_income_process()
        InfiniteType.solve()
        InfiniteType.unpack("cFunc")

        # Make and solve a perfect foresight consumer type with the same parameters
        PerfectForesightType = PerfForesightConsumerType(**test_dictionary)
        PerfectForesightType.cycles = 0

        PerfectForesightType.solve()
        PerfectForesightType.unpack("cFunc")

        self.InfiniteType = InfiniteType
        self.PerfectForesightType = PerfectForesightType
    def test_stable_points(self):

        # Solve the constrained agent. Stable points exists only with a
        # borrowing constraint.
        constrained_agent = PerfForesightConsumerType(cycles=0,
                                                      BoroCnstArt=0.0)

        constrained_agent.solve()

        # Check against pre-computed values.
        self.assertEqual(constrained_agent.solution[0].mNrmStE, 1.0)
        # Check that they are both the same, since the problem is deterministic
        self.assertEqual(constrained_agent.solution[0].mNrmStE,
                         constrained_agent.solution[0].mNrmTrg)
Exemplo n.º 3
0
    def __init__(self):

        PFexample = PerfForesightConsumerType(
        )  # set up a consumer type and use default parameteres
        PFexample.cycles = 0  # Make this type have an infinite horizon
        PFexample.DiscFac = 0.05
        PFexample.PermGroFac = [0.7]

        PFexample.solve()  # solve the consumer's problem
        PFexample.unpackcFunc()  # unpack the consumption function

        self.cFunc = PFexample.solution[0].cFunc
        self.a0 = self.cFunc(0)
        self.a1 = self.cFunc(1) - self.cFunc(0)
Exemplo n.º 4
0
    def __init__(self, Rfree=1.001, CRRA=2):

        PFaux = PerfForesightConsumerType(
        )  # set up a consumer type and use default parameteres
        PFaux.cycles = 0  # Make this type have an infinite horizon
        PFaux.DiscFac = 1 / Rfree
        PFaux.Rfree = Rfree
        PFaux.LivPrb = [1.0]
        PFaux.PermGroFac = [1.0]
        PFaux.CRRA = CRRA
        PFaux.solve()  # solve the consumer's problem
        PFaux.unpackcFunc()  # unpack the consumption function

        self.cFunc = PFaux.solution[0].cFunc
Exemplo n.º 5
0
    def setUp(self):
        """
        Prepare to compare the models by initializing and solving them
        """
        # Set up and solve infinite type
        import HARK.ConsumptionSaving.ConsumerParameters as Params

        # Define a test dictionary that should have the same solution in the
        # perfect foresight and idiosyncratic shocks models.
        test_dictionary = deepcopy(Params.init_idiosyncratic_shocks)
        test_dictionary['LivPrb'] = [1.]
        test_dictionary['DiscFac'] = 0.955
        test_dictionary['PermGroFac'] = [1.]
        test_dictionary['PermShkStd'] = [0.]
        test_dictionary['TranShkStd'] = [0.]
        test_dictionary['UnempPrb'] = 0.
        test_dictionary['T_cycle'] = 1
        test_dictionary['T_retire'] = 0
        test_dictionary['BoroCnstArt'] = None

        InfiniteType = IndShockConsumerType(**test_dictionary)
        InfiniteType.cycles = 0

        InfiniteType.updateIncomeProcess()
        InfiniteType.solve()
        InfiniteType.timeFwd()
        InfiniteType.unpackcFunc()

        # Make and solve a perfect foresight consumer type with the same parameters
        PerfectForesightType = PerfForesightConsumerType(**test_dictionary)
        PerfectForesightType.cycles = 0

        PerfectForesightType.solve()
        PerfectForesightType.unpackcFunc()
        PerfectForesightType.timeFwd()

        self.InfiniteType = InfiniteType
        self.PerfectForesightType = PerfectForesightType
Exemplo n.º 6
0
def plot1(Epsilon, DiscFac, PopGrowth, YearsPerGeneration, Initialk):
    '''Inputs:
        Epsilon: Elasticity of output with respect to capital/labour ratio
        DiscFac: One period discount factor
        YearPerGeneration: No. of years per generation
        PopGrowth: Gross growth rate of population in one period'''
    
    #
    kMax = 0.1
    # Define some parameters
    Beta = DiscFac**YearsPerGeneration
    xi = PopGrowth**YearsPerGeneration
    Q = (1-Epsilon)*(Beta/(1+Beta))/xi
    kBar = Q**(1/(1-Epsilon))
    
    # Create an agent that will solve the consumption problem
    PFagent = PerfForesightConsumerType(**init_perfect_foresight)
    PFagent.cycles = 1 # let the agent live the cycle of periods just once
    PFagent.T_cycle = 2 # Number of periods in the cycle
    PFagent.assign_parameters(PermGroFac = [0.000001]) # Income only in the first period
    PFagent.LivPrb = [1.]
    
    PFagent.DiscFac = Beta
    
    # Hark seems to have trouble with log-utility
    # so pass rho = 1 + something small.
    PFagent.CRRA = 1.001
    
    PFagent.solve()
    
    # Plot the OLG capital accumulation curve and 45 deg line
    plt.figure(figsize=(9,6))
    kt_range = np.linspace(0, kMax, 300)
    
    # Analitical solution plot
    ktp1 = Q*kt_range**Epsilon
    plt.plot(kt_range, ktp1, 'b-', label='Capital accumulation curve')
    plt.plot(kt_range, kt_range, 'k-', label='45 Degree line')
    
    # Plot the path
    kt_ar = Initialk
    ktp1_ar = 0.
    for i in range(3):
        
        # Compute Next Period's capital using HARK
        wage = (1-Epsilon)*kt_ar**Epsilon
        c = PFagent.solution[0].cFunc(wage)
        a = wage - c
        k1 = a/xi
        
        plt.arrow(kt_ar, ktp1_ar, 0., k1-ktp1_ar,
                  length_includes_head=True,
                  lw=0.01,
                  width=0.0005,
                  color='black',
                  edgecolor=None)
        plt.arrow(kt_ar, k1, k1-kt_ar , 0.,
                  length_includes_head=True,
                  lw=0.01,
                  width=0.0005,
                  color='black',
                  edgecolor=None)
        
        # Update arrow
        kt_ar = k1
        ktp1_ar = kt_ar
    
    # Plot kbar and initial k
    plt.plot(kBar, kBar, 'ro', label=r'$\bar{k}$')
    plt.plot(Initialk, 0.0005, 'co', label = '$k_0$')
    
    plt.legend()
    plt.xlim(0 ,kMax)
    plt.ylim(0, kMax)
    plt.xlabel('$k_t$')
    plt.ylabel('$k_{t+1}$')
    plt.show()

    return None
    'DiscFac' : 0.99,
    'Rfree' : 1.03,
    'LivPrb' : [1.0],
    'PermGroFac' : [1.02],
    'T_cycle' : 1,
    'cycles' : 0,
    'AgentCount' : 10000
}

# To those curious enough to open this hidden cell, you might notice that we defined
# a few extra parameters in that dictionary: T_cycle, cycles, and AgentCount. Don't
# worry about these for now.

PFexample0 = PerfForesightConsumerType(**PF_dictionary0) 
# the asterisks ** basically says "here come some arguments" to PerfForesightConsumerType
PFexample0.solve() # Solve with those parameters
m = 4 # market wealth includes current income 
p = 1 # normalize permanent income to one
# Extract interest and growth factors used in solution
R = PFexample0.Rfree 
PermGroFac0 = PFexample0.PermGroFac[0]
h0 = 1/(1-PermGroFac0/R)
c0 = np.asscalar(PFexample0.solution[0].cFunc(m)) # Evaluate cFunc at m
y0 = 1+(m-1)*(R-1) # Total income = noncapital plus capital income
s0 = (y0 - c0)/y0 
# print y0,h0,c0,s0

PF_dictionary1 = deepcopy(PF_dictionary0)
PermGroFac1 = 1.025
PF_dictionary1['PermGroFac'] = [PermGroFac1]
class testPerfForesightConsumerType(unittest.TestCase):
    def setUp(self):
        self.agent = PerfForesightConsumerType()
        self.agent_infinite = PerfForesightConsumerType(cycles=0)

        PF_dictionary = {
            "CRRA": 2.5,
            "DiscFac": 0.96,
            "Rfree": 1.03,
            "LivPrb": [0.98],
            "PermGroFac": [1.01],
            "T_cycle": 1,
            "cycles": 0,
            "AgentCount": 10000,
        }
        self.agent_alt = PerfForesightConsumerType(**PF_dictionary)

    def test_default_solution(self):
        self.agent.solve()
        c = self.agent.solution[0].cFunc

        self.assertEqual(c.x_list[0], -0.9805825242718447)
        self.assertEqual(c.x_list[1], 0.01941747572815533)
        self.assertEqual(c.y_list[0], 0)
        self.assertEqual(c.y_list[1], 0.511321002804608)
        self.assertEqual(c.decay_extrap, False)

    def test_another_solution(self):
        self.agent_alt.DiscFac = 0.90
        self.agent_alt.solve()
        self.assertAlmostEqual(self.agent_alt.solution[0].cFunc(10).tolist(),
                               3.9750093524820787)

    def test_check_conditions(self):
        self.agent_infinite.check_conditions()
        self.assertTrue(self.agent_infinite.conditions["AIC"])
        self.assertTrue(self.agent_infinite.conditions["GICRaw"])
        self.assertTrue(self.agent_infinite.conditions["RIC"])
        self.assertTrue(self.agent_infinite.conditions["FHWC"])

    def test_simulation(self):

        self.agent_infinite.solve()

        # Create parameter values necessary for simulation
        SimulationParams = {
            "AgentCount": 10000,  # Number of agents of this type
            "T_sim": 120,  # Number of periods to simulate
            "aNrmInitMean": -6.0,  # Mean of log initial assets
            "aNrmInitStd": 1.0,  # Standard deviation of log initial assets
            "pLvlInitMean": 0.0,  # Mean of log initial permanent income
            "pLvlInitStd":
            0.0,  # Standard deviation of log initial permanent income
            "PermGroFacAgg": 1.0,  # Aggregate permanent income growth factor
            "T_age":
            None,  # Age after which simulated agents are automatically killed
        }

        self.agent_infinite.assign_parameters(
            **SimulationParams
        )  # This implicitly uses the assign_parameters method of AgentType

        # Create PFexample object
        self.agent_infinite.track_vars = ["mNrm"]
        self.agent_infinite.initialize_sim()
        self.agent_infinite.simulate()

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history["mNrm"], axis=1)[40],
            -23.008063500363942,
        )

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history["mNrm"], axis=1)[100],
            -27.164608851546927,
        )

        ## Try now with the manipulation at time step 80

        self.agent_infinite.initialize_sim()
        self.agent_infinite.simulate(80)

        # This actually does nothing because aNrmNow is
        # epiphenomenal. Probably should change mNrmNow instead
        self.agent_infinite.state_now['aNrm'] += (-5.0)
        self.agent_infinite.simulate(40)

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history["mNrm"], axis=1)[40],
            -23.008063500363942,
        )

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history["mNrm"], axis=1)[100],
            -29.140261331951606,
        )

    def test_stable_points(self):

        # Solve the constrained agent. Stable points exists only with a
        # borrowing constraint.
        constrained_agent = PerfForesightConsumerType(cycles=0,
                                                      BoroCnstArt=0.0)

        constrained_agent.solve()

        # Check against pre-computed values.
        self.assertEqual(constrained_agent.solution[0].mNrmStE, 1.0)
        # Check that they are both the same, since the problem is deterministic
        self.assertEqual(constrained_agent.solution[0].mNrmStE,
                         constrained_agent.solution[0].mNrmTrg)
Exemplo n.º 9
0
    "BoroCnstArt": None,  # Artificial borrowing constraint
    "aXtraCount": 200,  # Maximum number of gridpoints in consumption function
    # Parameters that characterize the nature of time
    "T_cycle": 1,  # Number of periods in the cycle for this agent type
    "cycles": 0,  # Number of times the cycle occurs (0 --> infinitely repeated)
}

# %% [markdown]
# ## Solving and examining the solution of the perfect foresight model
#
# With the dictionary we have just defined, we can create an instance of $\texttt{PerfForesightConsumerType}$ by passing the dictionary to the class (as if the class were a function).  This instance can then be solved by invoking its $\texttt{solve}$ method.

# %%
PFexample = PerfForesightConsumerType(**PerfForesightDict)
PFexample.cycles = 0
PFexample.solve()

# %% [markdown]
# The $\texttt{solve}$ method fills in the instance's attribute $\texttt{solution}$ as a time-varying list of solutions to each period of the consumer's problem.  In this case, $\texttt{solution}$ will be a list with exactly one instance of the class $\texttt{ConsumerSolution}$, representing the solution to the infinite horizon model we specified.

# %%
print(PFexample.solution)

# %% [markdown]
# Each element of $\texttt{solution}$ has a few attributes. To see all of them, we can use the \texttt{vars} built in function:
#
# the consumption functions reside in the attribute $\texttt{cFunc}$ of each element of $\texttt{ConsumerType.solution}$.  This method creates a (time varying) attribute $\texttt{cFunc}$ that contains a list of consumption functions.

# %%
print(vars(PFexample.solution[0]))
# Replace parameters.
fig6_par['Rfree'] = 0.98
fig6_par['DiscFac'] = 1
fig6_par['PermGroFac'] = [0.99]
fig6_par['CRRA'] = 2
fig6_par['BoroCnstArt']  = 0
fig6_par['T_cycle'] = 0
fig6_par['cycles'] = 0
fig6_par['quiet'] = False

# Create the agent
RichButPatientAgent = PerfForesightConsumerType(**fig6_par)
# Check conditions
RichButPatientAgent.checkConditions(verbose = 3)
# Solve
RichButPatientAgent.solve()

# Plot
mPlotMin, mPlotMax = 1, 9.5
plt.figure(figsize = (8,4))
m_grid = np.linspace(mPlotMin,mPlotMax,500)
plt.plot(m_grid-1, RichButPatientAgent.solution[0].cFunc(m_grid), color="black")
plt.text(mPlotMax-1+0.05,1,r"$b$",fontsize = 26)
plt.text(mPlotMin-1,1.017,r"$c$",fontsize = 26)
plt.xlim(mPlotMin-1,mPlotMax-1)
plt.ylim(mPlotMin,1.016)

make('PFGICHoldsFHWCFailsRICFails')

# %%
class testPerfForesightConsumerType(unittest.TestCase):
    def setUp(self):
        self.agent = PerfForesightConsumerType()
        self.agent_infinite = PerfForesightConsumerType(cycles=0)

        PF_dictionary = {
            'CRRA': 2.5,
            'DiscFac': 0.96,
            'Rfree': 1.03,
            'LivPrb': [0.98],
            'PermGroFac': [1.01],
            'T_cycle': 1,
            'cycles': 0,
            'AgentCount': 10000
        }
        self.agent_alt = PerfForesightConsumerType(**PF_dictionary)

    def test_default_solution(self):
        self.agent.solve()
        c = self.agent.solution[0].cFunc

        self.assertEqual(c.x_list[0], -0.9805825242718447)
        self.assertEqual(c.x_list[1], 0.01941747572815533)
        self.assertEqual(c.y_list[0], 0)
        self.assertEqual(c.y_list[1], 0.511321002804608)
        self.assertEqual(c.decay_extrap, False)

    def test_another_solution(self):
        self.agent_alt.DiscFac = 0.90
        self.agent_alt.solve()
        self.assertAlmostEqual(self.agent_alt.solution[0].cFunc(10).tolist(),
                               3.9750093524820787)

    def test_checkConditions(self):
        self.agent_infinite.checkConditions()
        self.assertTrue(self.agent_infinite.conditions['AIC'])
        self.assertTrue(self.agent_infinite.conditions['GICPF'])
        self.assertTrue(self.agent_infinite.conditions['RIC'])
        self.assertTrue(self.agent_infinite.conditions['FHWC'])

    def test_simulation(self):

        self.agent_infinite.solve()

        # Create parameter values necessary for simulation
        SimulationParams = {
            "AgentCount": 10000,  # Number of agents of this type
            "T_sim": 120,  # Number of periods to simulate
            "aNrmInitMean": -6.0,  # Mean of log initial assets
            "aNrmInitStd": 1.0,  # Standard deviation of log initial assets
            "pLvlInitMean": 0.0,  # Mean of log initial permanent income
            "pLvlInitStd":
            0.0,  # Standard deviation of log initial permanent income
            "PermGroFacAgg": 1.0,  # Aggregate permanent income growth factor
            "T_age":
            None,  # Age after which simulated agents are automatically killed
        }

        self.agent_infinite(
            **SimulationParams
        )  # This implicitly uses the assignParameters method of AgentType

        # Create PFexample object
        self.agent_infinite.track_vars = ['mNrmNow']
        self.agent_infinite.initializeSim()
        self.agent_infinite.simulate()

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history['mNrmNow'], axis=1)[40],
            -23.008063500363942)

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history['mNrmNow'], axis=1)[100],
            -27.164608851546927)

        ## Try now with the manipulation at time step 80

        self.agent_infinite.initializeSim()
        self.agent_infinite.simulate(80)
        self.agent_infinite.aNrmNow += -5.  # Adjust all simulated consumers' assets downward by 5
        self.agent_infinite.simulate(40)

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history['mNrmNow'], axis=1)[40],
            -23.008063500363942)

        self.assertAlmostEqual(
            np.mean(self.agent_infinite.history['mNrmNow'], axis=1)[100],
            -29.140261331951606)
# %%
PFexample = PerfForesightConsumerType(**PF_dictionary)
# the asterisks ** basically say "here come some arguments" to PerfForesightConsumerType

# %% [markdown]
# In $\texttt{PFexample}$, we now have _defined_ the problem of a particular infinite horizon perfect foresight consumer who knows how to solve this problem.
#
# ## Solving an Agent's Problem
#
# To tell the agent actually to solve the problem, we call the agent's $\texttt{solve}$  **method**. (A **method** is essentially a function that an object runs that affects the object's own internal characteristics -- in this case, the method adds the consumption function to the contents of $\texttt{PFexample}$.)
#
# The cell below calls the $\texttt{solve}$ method for $\texttt{PFexample}$

# %%
PFexample.solve()

# %% [markdown]
# Running the $\texttt{solve}$ method creates the **attribute** of $\texttt{PFexample}$ named $\texttt{solution}.$  In fact, every subclass of $\texttt{AgentType}$ works the same way: The class definition contains the abstract algorithm that knows how to solve the model, but to obtain the particular solution for a specific instance (paramterization/configuration), that instance must be instructed to $\texttt{solve()}$ its problem.
#
# The $\texttt{solution}$ attribute is always a _list_ of solutions to a single period of the problem. In the case of an infinite horizon model like the one here, there is just one element in that list -- the solution to all periods of the infinite horizon problem.  The consumption function stored as the first element (element 0) of the solution list can be retrieved by:

# %%
PFexample.solution[0].cFunc

# %% [markdown]
# One of the results proven in the associated [the lecture notes](http://econ.jhu.edu/people/ccarroll/public/lecturenotes/consumption/PerfForesightCRRA/) is that, for the specific problem defined above, there is a solution in which the _ratio_ $c = C/P$ is a linear function of the _ratio_ of market resources to permanent income, $m = M/P$.
#
# This is why $\texttt{cFunc}$ can be represented by a linear interpolation.  It can be plotted using the command below:
#
Exemplo n.º 13
0
Paramod = deepcopy(init_perfect_foresight) # deepcopy prevents later overwriting

# Extract the parameters from the dictionary to make them easy to reference
CRRA       = Paramod['CRRA']                # Coefficient of relative risk aversion
Rfree      = Paramod['Rfree']               # Interest factor on assets
DiscFac    = Paramod['DiscFac']             # Intertemporal discount factor
PermGroFac = Paramod['PermGroFac']          # Permanent income growth factor
LivPrb     = Paramod['LivPrb']     = [1.0]  # Survival probability of 100 percent
cycles     = Paramod['cycles']     = 0      # This says that it is an infinite horizon model

# +
# Now let's pass our dictionary to our consumer class to create an instance 
PFagent = PerfForesightConsumerType(**Paramod) # Any parameters we did not modify get their default values

# Solve the agent's problem
PFagent.solve()

# +
# Plot the consumption function approximation versus the "true" consumption function

# Set out some range of market resources that we want to plot consumption for
mMin = 0 
mMax = 10
numPoints = 100
m_range = np.linspace(mMin, mMax, numPoints) # This creates an array of points in the given range

wealthHmn = PFagent.solution[0].hNrm # normalized human wealth is constructed when we .solve()
wealthMkt = m_range                  # bank balances plus current income
wealthTot = wealthHmn+wealthMkt      # Total wealth is the sum of human and market 

# Feed our range of market resources into our consumption function in order to get consumption at each point
Exemplo n.º 14
0
def FisherPlot(Y1, Y2, B1, R, c1Max, c2Max):

    # Basic setup of perfect foresight consumer

    # We first create an instance of the class
    # PerfForesightConsumerType, with its standard parameters.
    PFexample = PerfForesightConsumerType()

    PFexample.cycles = 1  # let the agent live the cycle of periods just once
    PFexample.T_cycle = 2  # Number of periods in the cycle
    PFexample.PermGroFac = [1.]  # No automatic growth in income across periods
    PFexample.LivPrb = [1.]  # No chance of dying before the second period
    PFexample.aNrmInitStd = 0.
    PFexample.AgentCount = 1
    CRRA = PFexample.CRRA
    Beta = PFexample.DiscFac

    # Set interest rate and bank balances from input.
    PFexample.Rfree = R
    PFexample.aNrmInitMean = B1

    # Solve the model: this generates the optimal consumption function.

    # Try-except blocks "try" to execute the code in the try block. If an
    # error occurs, the except block is executed and the application does
    # not halt
    try:
        PFexample.solve()
    except:
        print(
            'Those parameter values violate a condition required for solution!'
        )

    # Create the figure
    c1Min = 0.
    c2Min = 0.
    plt.figure(figsize=(8, 8))
    plt.xlabel('Period 1 Consumption $C_1$')
    plt.ylabel('Period 2 Consumption $C_2$')
    plt.ylim([c2Min, c2Max])
    plt.xlim([c1Min, c1Max])

    # Plot the budget constraint
    C1_bc = np.linspace(c1Min, B1 + Y1 + Y2 / R, 10, endpoint=True)
    C2_bc = (Y1 + B1 - C1_bc) * R + Y2
    plt.plot(C1_bc, C2_bc, 'k-', label='Budget Constraint')

    # Plot the optimal consumption bundle
    C1 = PFexample.solution[0].cFunc(B1 + Y1 + Y2 / R)
    C2 = PFexample.solution[1].cFunc((Y1 + B1 - C1) * R + Y2)
    plt.plot(C1, C2, 'ro', label='Optimal Consumption')

    # Plot the indifference curve
    V = C1**(1 - CRRA) / (1 - CRRA) + Beta * C2**(1 - CRRA) / (
        1 - CRRA)  # Get max utility
    C1_V = np.linspace(((1 - CRRA) * V)**(1 / (1 - CRRA)) + 0.5, c1Max, 1000)
    C2_V = (((1 - CRRA) * V - C1_V**(1 - CRRA)) / Beta)**(1 / (1 - CRRA))
    plt.plot(C1_V, C2_V, 'b-', label='Indiferrence Curve')

    # Add a legend and display the plot
    plt.legend()
    plt.show()

    return None
Exemplo n.º 15
0
# Replace parameters.
PFGICRawHoldsFHWCFailsRICFails_par['Rfree'] = 0.98
PFGICRawHoldsFHWCFailsRICFails_par['DiscFac'] = 1
PFGICRawHoldsFHWCFailsRICFails_par['PermGroFac'] = [0.99]
PFGICRawHoldsFHWCFailsRICFails_par['CRRA'] = 2
PFGICRawHoldsFHWCFailsRICFails_par['BoroCnstArt'] = 0
PFGICRawHoldsFHWCFailsRICFails_par['T_cycle'] = 0
PFGICRawHoldsFHWCFailsRICFails_par['cycles'] = 0
PFGICRawHoldsFHWCFailsRICFails_par['quiet'] = False

# Create the agent
RichButPatientPFConstrainedAgent = PerfForesightConsumerType(**PFGICRawHoldsFHWCFailsRICFails_par)
# Check conditions
RichButPatientPFConstrainedAgent.check_conditions(verbose=3)
# Solve
RichButPatientPFConstrainedAgent.solve()

# Plot
mPlotMin, mPlotMax = 1, 9.5
plt.figure(figsize=(8, 4))
m_grid = np.linspace(mPlotMin, mPlotMax, 500)
plt.plot(m_grid-1, RichButPatientPFConstrainedAgent.solution[0].cFunc(m_grid), color="black")
plt.text(mPlotMax-1+0.05, 1, r"$b$", fontsize=26)
plt.text(mPlotMin-1, 1.017, r"$c$", fontsize=26)
plt.xlim(mPlotMin-1, mPlotMax-1)
plt.ylim(mPlotMin, 1.016)

make('PFGICRawHoldsFHWCFailsRICFails')

# Now extract the default values of the parameters of interest

CRRA       = Params.CRRA 
Rfree      = Params.Rfree 
DiscFac    = Params.DiscFac
PermGroFac = Params.PermGroFac
rfree      = Rfree-1

# %%
# Now create a perfect foresight consumer example, 
PFagent = PerfForesightConsumerType(**Params.init_perfect_foresight)
PFagent.cycles = 0 # We need the consumer to be infinitely lived
PFagent.LivPrb = [1.0] # Suppress the possibility of dying

# Solve the agent's problem
PFagent.solve()

# %%
# Plot the consumption function 

# Remember, after invoking .solve(), the consumption function is stored as PFagent.solution[0].cFunc

# Set out some range of market resources that we want to plot consumption for

mMin = 0
mMax = 20
numPoints = 100
m_range  = np.linspace(mMin, mMax, numPoints) # This creates an array of points in the given range

# Feed our range of market resources into our consumption function in order to get consumption at each point