Exemplo n.º 1
0
    def evalSocialOptimum(self):
        '''
        Execute a simulation run that calculates "socially optimal" objects.
        '''
        self.update()
        self.solve()
        self.CalcSocialOptimum = True
        self.initializeSim()
        self.simulate()
        self.iLvlSocOpt_histX = deepcopy(self.iLvlSocOpt_hist)
        self.CopaySocOpt_histX = deepcopy(self.CopaySocOpt_hist)
        self.LifePriceSocOpt_histX = deepcopy(self.LifePriceSocOpt_hist)
        self.CumLivPrb_histX = deepcopy(self.CumLivPrb_hist)
        self.CalcSocialOptimum = False

        try:
            Health = self.hLvlNow_hist.flatten()
            Weights = self.CumLivPrb_hist.flatten()
            Copays = self.CopaySocOpt_hist.flatten()
            Age = np.tile(
                np.reshape(np.arange(self.T_cycle), (self.T_cycle, 1)),
                (1, self.AgentCount)).flatten()
            AgeSq = Age**2.
            HealthSq = Health**2
            Ones = np.ones_like(Health)
            AgeHealth = Age * Health
            AgeHealthSq = Age * HealthSq
            AgeSqHealth = AgeSq * Health
            AgeSqHealthSq = AgeSq * HealthSq
            these = np.logical_not(np.isnan(Copays))
            regressors = np.transpose(
                np.vstack((Ones, Health, HealthSq, Age, AgeHealth, AgeHealthSq,
                           AgeSq, AgeSqHealth, AgeSqHealthSq)))
            copay_model = WLS(Copays[these],
                              regressors[these, :],
                              weights=Weights[these])
            coeffs = (copay_model.fit()).params

            UpperCopayFunc = ConstantFunction(1.0)
            LowerCopayFunc = ConstantFunction(0.01)
            OptimalCopayInvstFunc = []
            for t in range(self.T_cycle):
                c0 = coeffs[0] + t * coeffs[3] + t**2 * coeffs[6]
                c1 = coeffs[1] + t * coeffs[4] + t**2 * coeffs[7]
                c2 = coeffs[2] + t * coeffs[5] + t**2 * coeffs[8]
                TempFunc = QuadraticFunction(c0, c1, c2)
                OptimalCopayInvstFunc_t = UpperEnvelope(
                    LowerEnvelope(TempFunc, UpperCopayFunc), LowerCopayFunc)
                OptimalCopayInvstFunc.append(OptimalCopayInvstFunc_t)

        except:
            for t in range(self.T_cycle):
                OptimalCopayInvstFunc.append(ConstantFunction(1.0))

        self.OptimalCopayInvstFunc = OptimalCopayInvstFunc
        self.delSolution()
Exemplo n.º 2
0
    def usePointsForInterpolation(self, cNrm, mNrm, interpolator):
        '''
        Make a basic solution object with a consumption function and marginal
        value function (unconditional on the preference shock).
        
        Parameters
        ----------
        cNrm : np.array
            Consumption points for interpolation.
        mNrm : np.array
            Corresponding market resource points for interpolation.
        interpolator : function
            A function that constructs and returns a consumption function.
            
        Returns
        -------
        solution_now : ConsumerSolution
            The solution to this period's consumption-saving problem, with a
            consumption function, marginal value function, and minimum m.
        '''
        # Make the preference-shock specific consumption functions
        PrefShkCount = self.PrefShkVals.size
        cFunc_list = []
        for j in range(PrefShkCount):
            MPCmin_j = self.MPCminNow * self.PrefShkVals[j]**(1.0 / self.CRRA)
            cFunc_this_shock = LowerEnvelope(
                LinearInterp(mNrm[j, :],
                             cNrm[j, :],
                             intercept_limit=self.hNrmNow * MPCmin_j,
                             slope_limit=MPCmin_j), self.cFuncNowCnst)
            cFunc_list.append(cFunc_this_shock)

        # Combine the list of consumption functions into a single interpolation
        cFuncNow = LinearInterpOnInterp1D(cFunc_list, self.PrefShkVals)

        # Make the ex ante marginal value function (before the preference shock)
        m_grid = self.aXtraGrid + self.mNrmMinNow
        vP_vec = np.zeros_like(m_grid)
        for j in range(
                PrefShkCount):  # numeric integration over the preference shock
            vP_vec += self.uP(cFunc_list[j](
                m_grid)) * self.PrefShkPrbs[j] * self.PrefShkVals[j]
        vPnvrs_vec = self.uPinv(vP_vec)
        vPfuncNow = MargValueFunc(LinearInterp(m_grid, vPnvrs_vec), self.CRRA)

        # Store the results in a solution object and return it
        solution_now = ConsumerSolution(cFunc=cFuncNow,
                                        vPfunc=vPfuncNow,
                                        mNrmMin=self.mNrmMinNow)
        return solution_now
Exemplo n.º 3
0
    def makeBasicSolution(self, EndOfPrdvP, aNrm, wageShkVals, prefShkVals):
        '''
        Given end of period assets and end of period marginal value, construct
        the basic solution for this period.
        
        Parameters
        ----------
        EndOfPrdvP : np.array
            Array of end-of-period marginal values.
        aNrm : np.array
            Array of end-of-period asset values that yield the marginal values
            in EndOfPrdvP.
        wageShkVals : np.array
            Array of this period transitory wage shock values.
        prefShkVals : np.array
            Array of this period preference shock values.
            
        Returns
        -------
        solution_now : ConsumerSolution
            The solution to this period's consumption-saving problem, with a
            consumption function, marginal value function.
        '''
        num_pref_shocks = len(prefShkVals)
        num_wage_shocks = len(wageShkVals)
        cFuncBaseByPref_list = []
        vPFuncBaseByPref_list = []
        lFuncBaseByPref_list = []
        for i in range(num_wage_shocks):
            cFuncBaseByPref_list.append([])
            vPFuncBaseByPref_list.append([])
            lFuncBaseByPref_list.append([])
            for j in range(num_pref_shocks):
                c_temp = self.uPinv(EndOfPrdvP / prefShkVals[j])
                l_temp = self.LabSupply(wageShkVals[i] * EndOfPrdvP)
                b_temp = c_temp + aNrm - l_temp * wageShkVals[i]

                if wageShkVals[i] == 0.0:
                    c_temp = np.insert(c_temp, 0, 0., axis=-1)
                    l_temp = np.insert(l_temp, 0, 0.0, axis=-1)
                    b_temp = np.insert(b_temp, 0, 0.0, axis=-1)

                lFuncBaseByPref_list[i].append(
                    LinearInterp(b_temp, l_temp, lower_extrap=True))
                cFunc1 = LinearInterp(b_temp, c_temp, lower_extrap=True)
                cFunc2 = LinearInterp(b_temp,
                                      l_temp * wageShkVals[i] + b_temp,
                                      lower_extrap=True)
                cFuncBaseByPref_list[i].append(LowerEnvelope(cFunc1, cFunc2))

                pseudo_inverse_vPfunc1 = LinearInterp(
                    b_temp,
                    prefShkVals[j]**(-1.0 / self.CRRA) * c_temp,
                    lower_extrap=True)
                pseudo_inverse_vPfunc2 = LinearInterp(
                    b_temp,
                    prefShkVals[j]**(-1.0 / self.CRRA) *
                    (l_temp * wageShkVals[i] + b_temp),
                    lower_extrap=True)
                pseudo_inverse_vPfunc = LowerEnvelope(pseudo_inverse_vPfunc1,
                                                      pseudo_inverse_vPfunc2)

                vPFuncBaseByPref_list[i].append(
                    MargValueFunc(pseudo_inverse_vPfunc, self.CRRA))

        cFuncNow = BilinearInterpOnInterp1D(cFuncBaseByPref_list, wageShkVals,
                                            prefShkVals)
        vPfuncNow = BilinearInterpOnInterp1D(vPFuncBaseByPref_list,
                                             wageShkVals, prefShkVals)
        lFuncNow = BilinearInterpOnInterp1D(lFuncBaseByPref_list, wageShkVals,
                                            prefShkVals)

        # Pack up and return the solution
        solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow)
        solution_now.lFunc = lFuncNow
        return solution_now