Exemplo n.º 1
0
def createStyles():
    st = [
        styles.StyleCompound(styles=[s, styles.StyleLine(lineWidth=5)])
        for s in styles.getStyles()
    ]
    st[0] = styles.StyleCompound(styles=[st[0], styles.StyleLine(lineStyle=2)])
    return st
Exemplo n.º 2
0
def doPlotsWTauMuRatio(dsetMgr, selectionName, ratios, unweighted,
                       fitFunction):
    prefix = era + "_" + selectionName + "_fitFunction%d" % fitFunction + unweighted + "_"

    st = [s.clone() for s in styles.getStyles()]
    st[0].marker = 33
    st[1].marker = 26
    st[2].marker = 32
    st = [
        styles.StyleCompound(styles=[s, styles.StyleMarker(markerSize=1.5)])
        for s in st
    ]

    # Do clone to get rid of statistics box
    p = plots.PlotBase([x[0].Clone() for x in ratios])
    p.setEnergy(dsetMgr.getEnergies())
    p.histoMgr.setHistoDrawStyleAll("P")
    p.histoMgr.setHistoLegendStyleAll("P")
    p.histoMgr.forEachHisto(styles.Generator(st))
    for i, x in enumerate(ratios):
        fitLine = x[1]
        st[i].apply(fitLine)
        p.appendPlotObject(fitLine)

    def customize(plot):
        xmin = plot.frame.GetXaxis().GetXmin()
        xmax = plot.frame.GetXaxis().GetXmax()

        val = 1
        l = ROOT.TLine(xmin, val, xmax, val)
        l.SetLineWidth(2)
        l.SetLineColor(ROOT.kRed)
        l.SetLineStyle(2)
        plot.prependPlotObject(l)

        val = 1 - 0.038479
        l = ROOT.TLine(xmin, val, xmax, val)
        l.SetLineWidth(2)
        l.SetLineColor(ROOT.kBlue)
        l.SetLineStyle(4)
        plot.prependPlotObject(l)
        plot.appendPlotObject(
            histograms.PlotText(0.18, 0.57, "0.038", size=18,
                                color=ROOT.kBlue))

    plots.drawPlot(p,
                   prefix + "WMuFraction",
                   "Muon p_{T} (GeV/c)",
                   ylabel="W#rightarrow#mu fraction",
                   opts={
                       "ymin": 0.9,
                       "ymax": 1.02
                   },
                   moveLegend={
                       "dh": -0.15,
                       "dx": -0.5
                   },
                   customizeBeforeDraw=customize)
def MetComparison(datasets):
    mt = plots.PlotBase(getHistos(datasets,"MetNoJetInHole", "MetJetInHole"))
#    mt.histoMgr.normalizeMCToLuminosity(datasets.getDataset("Data").getLuminosity())
    mt._setLegendStyles()
    st1 = styles.StyleCompound([styles.styles[2]])
    st2 = styles.StyleCompound([styles.styles[1]])
    st1.append(styles.StyleLine(lineWidth=3))
    st2.append(styles.StyleLine(lineStyle=2, lineWidth=3))
    mt.histoMgr.forHisto("MetNoJetInHole", st1)
    mt.histoMgr.forHisto("MetJetInHole", st2)
    mt.histoMgr.setHistoLegendLabelMany({
            "MetNoJetInHole": "Jets outside dead cells",
            "MetJetInHole": "Jets within dead cells"
            })
#    mt.histoMgr.setHistoDrawStyleAll("P")

    mt.appendPlotObject(histograms.PlotText(300, 300, "p_{T}^{jet} > 50 GeV/c", size=20))
    xlabel = "PF E_{T}^{miss} (GeV)"
    ylabel = "Events / %.2f"
    plots.drawPlot(mt, "MetComparison", xlabel=xlabel, ylabel=ylabel, rebinX=2, log=True,
                   createLegend={"x1": 0.6, "y1": 0.75, "x2": 0.8, "y2": 0.9},
                   ratio=False, opts2={"ymin": 0.5, "ymax": 1.5})
Exemplo n.º 4
0
def dashed(style):
    return styles.StyleCompound([style, styles.StyleLine(lineStyle=3)])
Exemplo n.º 5
0
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.dataset as dataset
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.histograms as histograms
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.plots as plots
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.counter as counter
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.tdrstyle as tdrstyle
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.styles as styles
from HiggsAnalysis.HeavyChHiggsToTauNu.tools.cutstring import *  # And, Not, Or
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.crosssection as xsect
import HiggsAnalysis.HeavyChHiggsToTauNu.tools.tauEmbedding as tauEmbedding

analysisEmb = "signalAnalysisCaloMet60TEff"
analysisSig = "signalAnalysisGenuineTau"  # require that the selected tau is genuine, valid comparison after njets

plotStyles = [
    styles.StyleCompound([s, styles.StyleLine(lineWidth=4)])
    for s in styles.styles[0:2]
]
plotStyles[0] = styles.StyleCompound(
    [plotStyles[0],
     styles.StyleMarker(markerStyle=21, markerSize=1.2)])

#taujet = "#tau jet"
#taujetH = "#tau-jet"
taujet = "#tau_{h}"
taujetH = "#tau_{h}"


def main():
    # Adjust paths such that this script can be run inside the first embedding trial directory
    dirEmbs = ["."] + [os.path.join("..", d) for d in tauEmbedding.dirEmbs[1:]]
Exemplo n.º 6
0
        return self._cache[dsetName].histogram(name)
systematicsSigMC = SystematicsSigMC()

systematicsEmbData = dataset.Systematics(shapes=[
    "SystVarMuonIdDataEff",
    "SystVarMuonTrgDataEff",
    "SystVarWTauMu",
    "SystVarEmbMTWeight",
], additionalNormalizations = {
    "CaloMETApproximation": 0.12,
    "QCDContamination": 0.02,
})


plotStyles = styles.styles[0:2]
plotStyles[0] = styles.StyleCompound([plotStyles[0], styles.StyleMarker(markerStyle=21, markerSize=1.2)])

def main():
    parser = OptionParser(usage="Usage: %prog [options]")
    parser.add_option("--dirSig", dest="dirSig", default=None,
                      help="Path to signalAnalysisGenTau multicrab directory")

    (opts, args) = parser.parse_args()
    if opts.dirSig is None:
        parser.error("--dirSig missing")

    dirEmb = "."
    dirSig = opts.dirSig

    # Apply TDR style
    style = tdrstyle.TDRStyle()
def main():
    parser = OptionParser(usage="Usage: %prog [options]")
    parser.add_option("--dirSig",
                      dest="dirSig",
                      default=None,
                      help="Path to signalAnalysisGenTau multicrab directory")
    parser.add_option("--nortau",
                      dest="nortau",
                      default=False,
                      action="store_true",
                      help="Is Rtau cut disabled?")
    parser.add_option("--notrigger",
                      dest="notrigger",
                      default=False,
                      action="store_true",
                      help="Is tau+MET trigger disabled?")
    parser.add_option("--dofit",
                      dest="dofit",
                      default=False,
                      action="store_true",
                      help="Do the fit on mT slope on ttbar?")

    (opts, args) = parser.parse_args()
    if opts.dirSig is None:
        parser.error("--dirSig missing")

    dirEmb = "."
    dirSig = opts.dirSig

    global analysisSig, systematicsSigMC
    if opts.notrigger:
        analysisSig = analysisSig.replace("Triggered", "")
        systematicsSigMC = dataset.Systematics()

    # Apply TDR style
    style = tdrstyle.TDRStyle()

    styles.styles[1] = styles.StyleCompound(
        [styles.styles[1],
         styles.StyleMarker(markerStyle=25)])

    histograms.cmsTextMode = histograms.CMSMode.SIMULATION_PRELIMINARY
    #    histograms.cmsTextMode = histograms.CMSMode.SIMULATION
    #    histograms.cmsTextMode = histograms.CMSMode.SIMULATION_UNPUBLISHED
    #    histograms.cmsTextMode = histograms.CMSMode.UNPUBLISHED
    #histograms.createLegend.setDefaults(y1=0.93, y2=0.75, x1=0.52, x2=0.93)
    histograms.createLegend.setDefaults(textSize=0.04)
    histograms.createLegend.moveDefaults(dx=-0.25, dh=-0.2, dy=-0.12)

    histograms.createLegendRatio.setDefaults(ncolumns=2,
                                             textSize=0.08,
                                             columnSeparation=0.6)
    histograms.createLegendRatio.moveDefaults(dx=-0.48, dh=-0.1, dw=0.25)

    if opts.dofit:
        histograms.uncertaintyMode.set(histograms.uncertaintyMode.StatOnly)
        histograms.createLegendRatio.moveDefaults(dw=-0.25)
        plots._legendLabels["BackgroundStatError"] = "Emb. stat. unc."
        plots._legendLabels[
            "BackgroundStatSystError"] = "Emb. stat.#oplussyst. unc."
    else:
        histograms.uncertaintyMode.set(histograms.uncertaintyMode.StatAndSyst)
        #        plots._legendLabels["BackgroundStatError"] = "Norm. stat. unc."
        #        plots._legendLabels["BackgroundStatSystError"] = "Norm. stat.#oplussyst. unc."
        plots._legendLabels["BackgroundStatError"] = "Non-emb. stat. unc."
        plots._legendLabels[
            "BackgroundStatSystError"] = "Non-emb. stat.#oplussyst. unc."
    plots._legendLabels["Data"] = "Embedded data"
    plots._legendLabels["EWKMC"] = "EWK+t#bar{t}"
    #    plots._legendLabels["EWKMC"] = "Non-emb. EWK+t#bar{t} with ^{}#tau_{h}"

    postfix = ""
    if opts.dofit:
        postfix = "_fit"

    for optMode in [
            #        "OptQCDTailKillerNoCuts",
            "OptQCDTailKillerLoosePlus",
            #        "OptQCDTailKillerMediumPlus",
            #        "OptQCDTailKillerTightPlus",
            #            None
    ]:
        datasetsEmb = dataset.getDatasetsFromMulticrabCfg(
            directory=dirEmb,
            dataEra=dataEra,
            analysisName=analysisEmb,
            optimizationMode=optMode)
        datasetsSig = dataset.getDatasetsFromMulticrabCfg(
            directory=dirSig,
            dataEra=dataEra,
            analysisName=analysisSig,
            optimizationMode=optMode)
        doDataset(datasetsEmb, datasetsSig, optMode + postfix, opts)
        datasetsEmb.close()
        datasetsSig.close()

        tauEmbedding.writeToFile(
            optMode + postfix, "input.txt",
            "Embedded: %s\nSignal analysis (GenTau): %s\n" %
            (os.getcwd(), dirSig))
Exemplo n.º 8
0
def doPlotsWTauMuRatioUncertaintyEstimate(dsetMgr, ratios, analysisName):
    prefix = era + "_"

    st = [s.clone() for s in styles.getStyles()]
    st[0].marker = 33
    st = [
        styles.StyleCompound(styles=[s, styles.StyleMarker(markerSize=1.5)])
        for s in st
    ]

    # Nominal
    p = plots.PlotBase([ratios[analysisName][0].Clone()])
    p.setEnergy(dsetMgr.getEnergies())
    p.histoMgr.setHistoDrawStyleAll("P")
    p.histoMgr.setHistoLegendStyleAll("P")
    p.histoMgr.forEachHisto(styles.Generator(st))

    fitLine = ratios[analysisName][1]
    st[0].apply(fitLine)
    p.appendPlotObject(fitLine)

    # Stat. unc. from parameters
    pars = [fitLine.GetParameter(i) for i in xrange(0, fitLine.GetNpar())]
    parErrors = [fitLine.GetParError(i) for i in xrange(0, fitLine.GetNpar())]

    def evalPar(x, i, shift):
        pars_ = pars[:]
        pars_[i] += shift
        return fitLine.EvalPar(x, array.array("d", pars_))

    # Fit function
    fits = [
        ratios[analysisName + "SystFunc0"][1],
        ratios[analysisName + "SystFunc1"][1]
    ]

    def maxDiff(x, tf1s, nominal):
        return max([abs(tf1.Eval(x[0]) - nominal) for tf1 in tf1s])

    # Sample
    samples = [
        ratios[analysisName + "SystWJets"][1],
        ratios[analysisName + "SystSingleTop"][1]
    ]

    # Weight systematic variations
    keys = filter(lambda n: "SystVar" in n, ratios.keys())
    weightSources = {}
    for key in keys:
        src = key[key.find("SystVar") + 7:].replace("Plus",
                                                    "").replace("Minus", "")
        #        if src != "TopPtWeight":
        #            continue
        #        if src != "PUWeight":
        #            continue
        #        print src

        if not src in weightSources:
            weightSources[src] = [ratios[key][1]]
        else:
            weightSources[src].append(ratios[key][1])

    def comb(plus, x, p):
        nominal = fitLine.Eval(x[0])
        diff = 0

        # stat unc
        uncStat = 0.0
        for i, parErr in enumerate(parErrors):
            diffI = max(abs(evalPar(x, i, parErr) - nominal),
                        abs(evalPar(x, i, -parErr)) - nominal)
            uncStat += diffI**2
        diff += uncStat

        # Fit function
        diffFit = maxDiff(x, fits, nominal)
        diff += diffFit**2

        # Sample
        diffSample = maxDiff(x, samples, nominal)
        diff += diffSample**2

        # Weights
        for src, tf1s in weightSources.iteritems():
            diffWeight = maxDiff(x, tf1s, nominal)
            diff += diffWeight**2

        diff = math.sqrt(diff)
        if plus:
            ret = nominal + diff
        else:
            ret = nominal - diff

        if ret > 1:
            ret = 1.0
        if ret < 0:
            ret = 0.0


#        if ret > 0:
#            print x[0], (ret-nominal)/ret

        return ret

    p.appendPlotObject(
        ROOT.TF1("combPlus", lambda x, p: comb(True, x, p), fitLine.GetXmin(),
                 fitLine.GetXmax(), fitLine.GetNpar()))
    p.appendPlotObject(
        ROOT.TF1("combMinus", lambda x, p: comb(False, x, p),
                 fitLine.GetXmin(), fitLine.GetXmax(), fitLine.GetNpar()))

    # Simple relative uncertainty
    def rel(x):
        return 0.012

    def relUnc(plus, x, p):
        nominal = fitLine.Eval(x[0])
        if plus:
            f = 1 + rel(x[0])
        else:
            f = 1 - rel(x[0])
        return nominal * f

    relPlus = ROOT.TF1("relPlus", lambda x, p: relUnc(True, x, p),
                       fitLine.GetXmin(), fitLine.GetXmax(), fitLine.GetNpar())
    relMinus = ROOT.TF1("relMinus", lambda x, p: relUnc(False, x, p),
                        fitLine.GetXmin(), fitLine.GetXmax(),
                        fitLine.GetNpar())
    relPlus.SetLineColor(ROOT.kGreen)
    relMinus.SetLineColor(ROOT.kGreen)
    p.appendPlotObject(relPlus)
    p.appendPlotObject(relMinus)

    def customize(plot):
        xmin = plot.frame.GetXaxis().GetXmin()
        xmax = plot.frame.GetXaxis().GetXmax()
        ymin = plot.frame.GetYaxis().GetXmin()
        ymax = plot.frame.GetYaxis().GetXmax()

        val = 1
        l = ROOT.TLine(xmin, val, xmax, val)
        l.SetLineWidth(2)
        l.SetLineColor(ROOT.kRed)
        l.SetLineStyle(2)
        plot.prependPlotObject(l)

        l = ROOT.TLine(41, ymin, 41, ymax)
        l.SetLineWidth(2)
        l.SetLineColor(ROOT.kRed)
        l.SetLineStyle(2)
        plot.prependPlotObject(l)

    plots.drawPlot(
        p,
        prefix + "WMuFractionUncertainty",
        "Muon p_{T} (GeV/c)",
        ylabel="W#rightarrow#mu fraction",
        opts={
            "ymin": 0.9,
            "ymax": 1.02
        },
        createLegend=None,
        #moveLegend={"dh": -0.15, "dx": -0.5},
        customizeBeforeDraw=customize)