Exemplo n.º 1
0
        batch_ipt = []
        batch_tgt = []
        for step in range(timesteps - channels - 1):
            batch_ipt.append(signals[i, step:step + channels])
            batch_tgt.append([signals[i, step + channels + 1]])
        batch_ipt = np.array(batch_ipt)
        batch_tgt = np.array(batch_tgt)
        batch_ipt = np.expand_dims(batch_ipt, 0)
        batch_tgt = np.expand_dims(batch_tgt, 0)
        batch_loss = model.train_on_batch(batch_ipt, batch_tgt)  ### TRAINNING
        loss.append([time.time() - initial_time, batch_loss])
        print('LOSS:', loss[-1][1], 'Time:', loss[-1][0])

save_model(model, path, 'model')
np.savetxt(path + 'loss.csv', np.array(loss), fmt='%.18e', delimiter=',')
P_model.set_weights(model.get_weights())
save_model(P_model, path, 'P_model')

for i in range(samples):
    seed = np.array(signals[i][0:channels])
    save_wav(max_amp * seed, name=path + 'seed_' + names[i] + '.wav')
    seed = np.expand_dims(seed, 0)
    seed = np.expand_dims(seed, 0)
    pred_wave = np.zeros(timesteps)
    for j in range(channels, timesteps):
        predicted = P_model.predict(seed)
        pred_wave[j] = predicted[0, 0, 0]
        seed = np.roll(seed, -1)
        seed[0, 0, channels - 1] = predicted[0, 0, 0]
    save_wav(max_amp * pred_wave, name=path + 'wave_' + names[i] + '.wav')
Exemplo n.º 2
0
  plt.axis([0, L, -1.1 * amplitude, 1.1 * amplitude])
  plt.axvline(L * pickup_position)
  plt.savefig(path + 'plots/' + str(ctr) + '.png')
  plt.close()
ctr += 1
for j in range(1, N):
  print('step ', ctr,' of ', N)
  for i in range(1, M):
    y[i] = 2 * y_1[i] - y_2[i] + C**2 * (y_1[i+1] - 2*y_1[i] + y_1[i-1])
  y[0] = y[0] * 0.5
  y[M] = y[M] * 0.5
  y = y * sustain
  w.append(y[pickup])
  y_2[:] = y_1 
  y_1[:] = y
  if plot:
    loop = 0
    plt.plot(x, y, 'k')
    plt.axis([0, L, -1.1 * amplitude, 1.1 * amplitude])
    plt.axvline(L * pickup_position)
    plt.savefig(path + 'plots/' + str(ctr) + '.png')
    plt.close()
  ctr += 1
w = np.array(w) * 4000000
print('time =', time.time() - initial_time)
save_wav(
  w,
  path + str(frequency) + 
  '_Pluck=' + str(pluck_position) + 
  '_Pick=' + str(pickup_position) + '.wav'
  )
Exemplo n.º 3
0
    model.add(K.layers.Dense(tgt.shape[1], activation=act, input_shape=(ipt.shape[1],)))
  else:
    model.add(K.layers.Dense(hlayers[0], activation=act, input_shape=(ipt.shape[1],)))
    # model.add(K.layers.Dropout(0.01))
    for hn in hlayers[1:]:
      model.add(K.layers.Dense(hn, activation=act))
      # model.add(K.layers.Dropout(0.01))
    model.add(K.layers.Dense(tgt.shape[1], activation=act))
    # model.add(K.layers.Dropout(0.01))
  model.compile(loss='mean_squared_error', optimizer=opt)
  tb = K.callbacks.TensorBoard(logpath)
  K.utils.print_summary(model)
  history = model.fit(ipt, tgt, batch_size=batch, epochs=epchs, verbose=0, callbacks=[tb], shuffle=True)
  
  save_model(model, logpath, 'model')
  
  return model



path = './Log/'

m = train([75,75,75], path, batch = 100, epchs = 10)

for i, input in enumerate(ipt):
  input = np.expand_dims(input, 0)
  pred = m.predict(input)
  save_wav(pred * max_amp, name = path + 'wave-' + labels[i] + '.wav')

# %USERPROFILE%/.keras/keras.json
Exemplo n.º 4
0
model = K.models.Model(input, output)
K.utils.print_summary(model)
model.compile(loss='mean_squared_error', optimizer=opt)

tb = K.callbacks.TensorBoard(path)
history = model.fit(ipt,
                    tgt,
                    batch_size=tgt.shape[0],
                    epochs=epcs,
                    verbose=1,
                    callbacks=[tb],
                    validation_split=0.0,
                    shuffle=True)

save_model(model, path, 'model')

predictions = model.predict(xipt) * M
# predictions = np.power(predictions, 3)

N = predictions.shape[1] // 2

# d = (- np.log(0.1)) / original_len
# X = np.arange(0, original_len, 1)
# D = np.exp(-d * X)
for i, p in enumerate(predictions):
    real = p[:N]
    imag = p[N:]
    w = irfft(real + imag * 1j, original_len) / 2 * original_len
    # w = np.multiply(D, w)
    save_wav(w, path + xnames[i] + '.wav')
Exemplo n.º 5
0
net = K.models.load_model('03_train/' + piece_name + '/#model.h5',
                          {'scaled_tanh': scaled_tanh})

K = np.genfromtxt("01_tuning_stretch/" + piece_name + "/coefs.csv")

st = time.time()  # <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> #

key = int(key_name)
f0 = np.power(
    2, (key - 49) / 12) * 440 * (K[0] * key**K[1] * key**2 + K[2] * key + K[3])
key = (key - 1) / 87
ipt = np.array([[key, p] for p in np.linspace(0, 1, partials)])

[F, A, D] = net.predict(ipt)

F = (np.ndarray.flatten(F) * (Mf - mf) + mf) * P * f0
A = np.ndarray.flatten(A) * ((Ma - ma) + ma) * 5000
D = np.ndarray.flatten(D) * ((Md - md) + md)

# print(A.shape,D.shape,F.shape, P.shape)
w = np.zeros(n)
for i in range(partials):
    # print('partial:', i)
    ph = np.random.uniform(0, 2 * np.pi)
    w += create_signal(n, fps, F[i], ph, A[i], D[i])

print(time.time() -
      st)  # <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> #

save_wav(w, key_name + ".wav")
Exemplo n.º 6
0
  steps = a.shape[0]
  X = np.linspace(0 , 1 , steps)
  Y = 3 * X ** 2 - 2 * X** 3
  return a * (1 - Y) + b * Y

extended_ipt = []
extended_names = []
for i in np.arange(1, 5 + 0.1, 0.5):
  for j in np.arange(1, 5 + 0.1, 0.5):
    for k in np.arange(1, 4 + 0.1, 0.5):
      name = str(i) + '_' + str(j) + '_' + str(k)
      extended_names.append(name)
      extended_ipt.append([i, j, k])

extended_ipt = np.array(extended_ipt, dt)
extended_ipt, maxs_ipt, mins_ipt = normalize_cols(extended_ipt)

predictions = model.predict(extended_ipt)

if overlap == 0:
  predictions = np.reshape(predictions, (extended_ipt.shape[0],-1))
  for i, w in enumerate(predictions):
    save_wav(w * amp, path + extended_names[i] + '.wav')
else:
  for i, p in enumerate(predictions):
    w = p[0]
    for j in range(1, timesteps):
      x = p[j]
      b = blend(w[-overlap:], x[:overlap])
      w = np.hstack([w[:-overlap], b ,x[overlap:]])
    save_wav(w[:-overlap] * amp, path + extended_names[i] + '.wav')
Exemplo n.º 7
0
# names = []
# for filename in filenames:
#   names.append(filename.replace('.wav', ''))
# names = np.sort(np.array(names, dtype=np.int)).astype(np.str)

names = []
for i in range(1, 88 + 1):
    names.append(str(i))

A = np.genfromtxt('03_train/' + piece_name + '/amps_over_max_amp.csv',
                  delimiter=',')
D = np.genfromtxt('03_train/' + piece_name + '/decays.csv', delimiter=',')
I = np.genfromtxt('03_train/' + piece_name + '/Mfreqs_over_Tfreqs.csv',
                  delimiter=',')
K = np.genfromtxt("01_tuning_stretch/" + piece_name + "/coefs.csv")

for i, name in enumerate(names):
    k = int(name)
    print(name)
    w = np.zeros(n)
    f0 = np.power(
        2, (k - 49) / 12) * 440 * (K[0] * k**K[1] * k**2 + K[2] * k + K[3])
    for j in range(partials):
        p = np.random.uniform(0, 2 * np.pi)
        f = f0 * (j + 1) * I[i, j]
        d = D[i, j]
        a = A[i, j] * 5000
        w += create_signal(n, fps, f, p, a, d)

    save_wav(w, save_path + name + '.wav')