Exemplo n.º 1
0
def thermal_pressure_profiler(hf, step=-1):
    """In Pa"""
    try:
        hybrid_n = hr(hf, 'np_tot')
    except NoSuchVariable:
        hybrid_n = hr(hf, 'np')

    grid_points = hybrid_n.para['grid_points']
    n = hybrid_n.get_timestep(step)[-1]
    ndata = n_km2cm(n)

    try:
        hybrid_temp = hr(hf, 'temp_tot')
    except NoSuchVariable:
        hybrid_temp = hr(hf, 'temp_p')

    t = hybrid_temp.get_timestep(step)[-1]
    tdata = t_K(t)

    # in Pa not pPa
    thermal_p_data = pressure_pPa(ndata, tdata) * 1e-12

    p_therm = profile(points, grid_points, thermal_p_data)

    return p_therm
Exemplo n.º 2
0
def insert_beta_plot(fig, ax, prefix, cax):
    hn = hr(prefix, 'np')
    para = hn.para
    n = hn.get_timestep(-1)[-1]
    try:
        T = hr(prefix, 'temp_tot').get_timestep(-1)[-1]
    except NoSuchVariable:
        T = hr(prefix, 'temp_p').get_timestep(-1)[-1]

    B = hr(prefix, 'bt').get_timestep(-1)[-1]

    # Convert units
    n = n / (1000.0**3)  # 1/km^3 -> 1/m^3
    T = 1.60218e-19 * T  # eV -> J
    B = 1.6726219e-27 / 1.60217662e-19 * B  # proton gyrofrequency -> T

    # Compute B \cdot B
    B2 = np.sum(B**2, axis=-1)

    # Compute plasma beta
    mu_0 = value('mag. constant')
    assert unit('mag. constant') == 'N A^-2'
    data = n * T / (B2 / (2 * mu_0))

    m, x, y, s = beta_plot2(ax, data, para, 'xy', mccomas=True)

    if cax != 'None':
        fig.colorbar(m, cax=cax, orientation='horizontal')
Exemplo n.º 3
0
def pressure_profiler(hf, step=-1):
    try:
        hybrid_n = hr(hf, 'np_tot')
    except NoSuchVariable:
        hybrid_n = hr(hf, 'np')

    grid_points = hybrid_n.para['grid_points']
    n = hybrid_n.get_timestep(step)[-1]
    ndata = n_km2cm(n)

    try:
        hybrid_temp = hr(hf, 'temp_tot')
    except NoSuchVariable:
        hybrid_temp = hr(hf, 'temp_p')

    t = hybrid_temp.get_timestep(step)[-1]
    tdata = t_K(t)

    thermal_p_data = pressure_pPa(ndata, tdata)

    hybrid_b = hr(hf, 'bt')
    b = hybrid_b.get_timestep(step)[-1]
    bdata = b_pressure(b)

    p_therm = profile(points, grid_points, thermal_p_data)
    p_b = profile(points, grid_points, bdata)

    return zip(p_therm, p_b)
Exemplo n.º 4
0
def plot_traj_context(fig, ax_xy, ax_xz, prefix, traj, size, mccomas=False):
    hybrid_np_CH4 = hr(prefix, 'np_CH4')
    np_3d = hybrid_np_CH4.get_timestep(-1)[-1]
    hh.direct_plot(fig,
                   ax_xy,
                   np_3d,
                   hybrid_np_CH4.para,
                   'xy',
                   norm=LogNorm(),
                   fontsize=size,
                   mccomas=mccomas)
    hh.direct_plot(fig,
                   ax_xz,
                   np_3d,
                   hybrid_np_CH4.para,
                   'xz',
                   norm=LogNorm(),
                   fontsize=size,
                   mccomas=mccomas)

    traj = traj / 1187.

    if mccomas:
        traj[:, 0] = -traj[:, 0]
        traj[:, 1] = -traj[:, 1]

    x = traj[:, 0]
    y = traj[:, 1]
    z = traj[:, 2]
    ax_xy.plot(x, y, color='black', linewidth=2, scalex=False, scaley=False)
    ax_xz.plot(x, z, color='black', linewidth=2, scalex=False, scaley=False)
Exemplo n.º 5
0
def beta_data(prefix):
    hn = hr(prefix, 'np')
    para = hn.para
    n = hn.get_timestep(-1)[-1]
    T = hr(prefix, 'temp_p').get_timestep(-1)[-1]
    B = hr(prefix, 'bt').get_timestep(-1)[-1]

    # Convert units
    n = n / (1000.0**3)  # 1/km^3 -> 1/m^3
    T = 1.60218e-19 * T  # eV -> J
    B = 1.6726219e-27 / 1.60217662e-19 * B  # proton gyrofrequency -> T

    # Compute B \cdot B
    B2 = np.sum(B**2, axis=-1)

    # Compute plasma beta
    data = n * T / (B2 / (2 * 1.257e-6))

    return para, data
Exemplo n.º 6
0
    def profiler(hf, step=-1):
        hybrid = hr(hf, var)
        grid_points = hybrid.para['grid_points']
        v = hybrid.get_timestep(step)[-1]
        if modifier is not None:
            data = modifier(v)
        else:
            data = v

        return profile(points, grid_points, data)
Exemplo n.º 7
0
def magnetic_pressure_profiler(hf, step=-1):
    hybrid_b = hr(hf, 'bt')
    b = hybrid_b.get_timestep(step)[-1]

    # in Pa not pPa
    bdata = b_pressure(b) * 1e-12

    grid_points = hybrid_b.para['grid_points']

    p_b = profile(points, grid_points, bdata)

    return p_b
Exemplo n.º 8
0
def plot_1d_variable(fig, ax, args):

    # Get upstream values
    para = hp(args.prefix, force_version=args.force_version).para
    B0 = para['b0_init']           # T  (yes, b0_init is already in Tesla. No need to convert.)
    n0 = para['nf_init']/1000**3   # m^-3

    ## Handy parameters common to most plots
    c = 3e8 # speed of light in m/s
    q = 1.602e-19 # C
    m = para['ion_amu']*1.6726e-27 # kg
    q_over_m = q/m # C/kg
    e0 = 8.854e-12 # F/m
    mu_0 = 1.257e-6

    # Some upstream parameters
    omega_pi = np.sqrt(n0*q*q_over_m/e0) # rad/s
    lambda_i = c/omega_pi # m
    omega_ci = q_over_m*B0 # rad/s

    ## Special cases first, the general case is the else block at the bottom
    if args.variable.name == 'pressure':
        steps, times, n = get_1d_scalar(hr(args.prefix, 'np_tot', force_version=args.force_version))
        _, _, T = get_1d_scalar(hr(args.prefix, 'temp_tot', force_version=args.force_version))

        # Convert units
        n = n/(1000.0**3)                    # 1/km^3 -> 1/m^3
        T = q * T                  # eV -> J

        x = 1000*para['qx']/lambda_i # position in units of lambda_i
        t = times*omega_ci # time in units of omega_ci^-1

        pressure = n*T

        mesh = ax.pcolormesh(t, x, pressure.T, 
                cmap=args.colormap,
                norm=args.norm,
                vmin=args.vmin,
                vmax=args.vmax)
        ax.set_xlim(args.xlim)
        ax.set_ylim(args.ylim)


    elif args.variable.name == 'beta':
        steps, times, n = get_1d_scalar(hr(args.prefix, 'np_tot', force_version=args.force_version))
        _, _, T = get_1d_scalar(hr(args.prefix, 'temp_tot', force_version=args.force_version))
        _, _, B = get_1d_vector(hr(args.prefix, 'bt', force_version=args.force_version))


        # Convert units
        n = n/(1000.0**3)                    # 1/km^3 -> 1/m^3
        T = q * T                  # eV -> J
        B = B/q_over_m # ion gyrofrequency -> T

        # Compute B \cdot B
        B2 = np.sum(B**2, axis=-1)

        # Compute plasma beta
        beta = n*T/(B2/(2*mu_0))

        x = 1000*para['qx']/lambda_i # position in units of lambda_i
        t = times*omega_ci # time in units of omega_ci^-1

        mesh = ax.pcolormesh(t, x, beta.T, 
                cmap=args.colormap,
                norm=args.norm,
                vmin=args.vmin,
                vmax=args.vmax)
        ax.set_xlim(args.xlim)
        ax.set_ylim(args.ylim)

    elif args.variable.name == 'bmag':
        steps, times, B = get_1d_magnetude(hr(args.prefix, 'bt', force_version=args.force_version))

        B = B/q_over_m # ion gyrofrequency -> T

        x = 1000*para['qx']/lambda_i # position in units of lambda_i
        t = times*omega_ci # time in units of omega_ci^-1

        mesh = ax.pcolormesh(t, x, B.T, 
                cmap=args.colormap,
                norm=args.norm,
                vmin=args.vmin,
                vmax=args.vmax)
        ax.set_xlim(args.xlim)
        ax.set_ylim(args.ylim)

    elif args.variable.name == 'brat':
        steps, times, B = get_1d_magnetude(hr(args.prefix, 'bt', force_version=args.force_version))

        B = B/q_over_m # ion gyrofrequency -> T

        B = B/para['b0_init'] # Normalize

        x = 1000*para['qx']/lambda_i # position in units of lambda_i
        t = times*omega_ci # time in units of omega_ci^-1

        mesh = ax.pcolormesh(t, x, B.T, 
                cmap=args.colormap,
                norm=args.norm,
                vmin=args.vmin,
                vmax=args.vmax)
        ax.set_xlim(args.xlim)
        ax.set_ylim(args.ylim)

    elif args.variable.name == 'upmag':
        steps, times, up = get_1d_magnetiude(hr(args.prefix, 'up', force_version=args.force_version))

        x = 1000*para['qx']/lambda_i # position in units of lambda_i
        t = times*omega_ci # time in units of omega_ci^-1

        mesh = ax.pcolormesh(t, x, up.T, 
                cmap=args.colormap,
                norm=args.norm,
                vmin=args.vmin,
                vmax=args.vmax)
        ax.set_xlim(args.xlim)
        ax.set_ylim(args.ylim)

    else:
        h = hr(args.prefix,args.variable.name, force_version=args.force_version)
        var_sanity_check(h.isScalar, args.variable.coordinate)

        if h.isScalar:
            steps, times, data = get_1d_scalar(h)
        else:
            steps, times, data = get_1d_vector(h)
            data = data[:,:,args.variable.coordinate]

        x = 1000*para['qx']/lambda_i # position in units of lambda_i
        t = times*omega_ci # time in units of omega_ci^-1

        mesh = ax.pcolormesh(t, x, data.T, 
                cmap=args.colormap,
                norm=args.norm,
                vmin=args.vmin,
                vmax=args.vmax)
        ax.set_xlim(args.xlim)
        ax.set_ylim(args.ylim)

    ax.format_coord = build_pcolormesh_format_coord(mesh)

    return mesh
Exemplo n.º 9
0
def plot_variable(fig1,fig2, ax1,ax2, args):
    ## Special cases first, the general case is direct_plot() at the bottom

    if args.variable.name == 'bs':
        hup = hr(args.prefix,'up')
        hn_tot = hr(args.prefix,'np')
        hn_h = hr(args.prefix,'np_He')
        hn_ch4 = hr(args.prefix,'np_CH4')

        ux = hup.get_timestep(args.stepnum)[-1]
        n_tot = hn_tot.get_timestep(args.stepnum)[-1]
        n_h = hn_h.get_timestep(args.stepnum)[-1]
        n_ch4 = hn_ch4.get_timestep(args.stepnum)[-1]

        ux = ux[:,:,:,0]
        para = hup.para

        bs_hi_plot(fig1, ax1, n_tot, n_h, n_ch4,ux, 401, 2.7e12, para, 'xy', 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)
        bs_hi_plot(fig2, ax2, n_tot, n_h, n_ch4,ux, 401, 2.7e12, para, 'xz', 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)

    elif args.variable.name == 'pressure':
        try:
            hn = hr(args.prefix, 'np_tot')
        except NoSuchVariable:
            hn = hr(args.prefix, 'np')

        para = hn.para
        n = hn.get_timestep(args.stepnum)[-1]
        try:
            T = hr(args.prefix, 'temp_tot').get_timestep(args.stepnum)[-1]
        except NoSuchVariable:
            T = hr(args.prefix, 'temp_p').get_timestep(args.stepnum)[-1]

        # Convert units
        n = n/(1000.0**3)                    # 1/km^3 -> 1/m^3
        T = 1.60218e-19 * T                  # eV -> J

        data = n*T

        m1, X1, Y1, C1 = direct_plot(fig1, ax1, data, para, 'xy', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize, 
                cbtitle=args.units)
        m2, X2, Y2, C2 = direct_plot(fig2, ax2, data, para, 'xz', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize, 
                cbtitle=args.units)

    elif args.variable.name == 'beta':
        hn = hr(args.prefix, 'np')
        para = hn.para
        n = hn.get_timestep(args.stepnum)[-1]
        try:
            T = hr(args.prefix, 'temp_tot').get_timestep(args.stepnum)[-1]
        except NoSuchVariable:
            T = hr(args.prefix, 'temp_p').get_timestep(args.stepnum)[-1]

        B = hr(args.prefix, 'bt').get_timestep(args.stepnum)[-1]

        # Convert units
        n = n/(1000.0**3)                    # 1/km^3 -> 1/m^3
        T = 1.60218e-19 * T                  # eV -> J
        B = para['ion_amu']*1.6726219e-27/1.60217662e-19 * B # ion gyrofrequency -> T

        # Compute B \cdot B
        B2 = np.sum(B**2, axis=-1)

        # Compute plasma beta
        data = n*T/(B2/(2*1.257e-6))

        m1, X1, Y1, C1 = beta_plot2(ax1, data, para, 'xy', mccomas=args.mccomas)
        m2, X2, Y2, C2 = beta_plot2(ax2, data, para, 'xz', mccomas=args.mccomas)
        fig1.colorbar(m1, ax=ax1)
        fig2.colorbar(m2, ax=ax2)

        args.variable = 'Plasma Beta'

    elif args.variable.name == 'bmag':
        hb = hr(args.prefix, 'bt')
        para = hb.para
        B = hb.get_timestep(args.stepnum)[-1]
        B = para['ion_amu']*1.6726219e-27/1.60217662e-19 * B # ion gyrofrequency -> T
        Bmag = np.sqrt(np.sum(B**2, axis=-1))
        data = Bmag

        m1, X1, Y1, C1 = direct_plot(fig1, ax1, data, para, 'xy', cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)
        m2, X2, Y2, C2 = direct_plot(fig2, ax2, data, para, 'xz', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)

    elif args.variable.name == 'fmach':
        hn = hr(args.prefix, 'np')
        para = hn.para
        n = hn.get_timestep(args.stepnum)[-1]
        T = hr(args.prefix, 'temp_tot').get_timestep(args.stepnum)[-1]
        B = hr(args.prefix, 'bt').get_timestep(args.stepnum)[-1]
        u = hr(args.prefix, 'up').get_timestep(args.stepnum)[-1]
        ux = -u[:,:,:,0]

        n = n/(1000.0**3)                    # 1/km^3 -> 1/m^3
        T = 1.60218e-19 * T                  # eV -> J
        B = para['ion_amu']*1.6726219e-27/1.60217662e-19 * B # ion gyrofrequency -> T

        B2 = np.sum(B**2, axis=-1)

        c   = 3e8       # m/s
        mu0 = 1.257e-6  # H/m
        mp  = 1.602e-19 # kg
        gamma = 3

        # Upstream alfven velocity
        us_va = np.sqrt(B2[-1,0,0]/(mu0*mp*n[-1,0,0]))

        # Upstream ion acousitic speed
        us_vs = np.sqrt(gamma*T[-1,0,0]/mp)

        # Upstream fastmode velocity
        us_vf = c*np.sqrt((us_vs**2 + us_va**2)/(c**2 + us_va**2))

        data = ux/us_vf

        m1, X1, Y1, C1 = direct_plot(fig1, ax1, data, para, 'xy', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)
        m2, X2, Y2, C2 = direct_plot(fig2, ax2, data, para, 'xz', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)

    elif args.variable.name == 'ratio':
        h = hr(args.prefix, 'np')
        ch4 = hr(args.prefix, 'np_CH4')

        h_data = h.get_timestep(args.stepnum)[-1]
        ch4_data = ch4.get_timestep(args.stepnum)[-1]

        para = h.para

        ratio_plot(fig1, ax1, h_data, ch4_data, para, 'xy', 
                norm=args.norm, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)
        ratio_plot(fig2, ax2, h_data, ch4_data, para, 'xz', 
                norm=args.norm, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize)
    elif args.variable.name == 'upmag':
        h = hr(args.prefix,'up')

        data = h.get_timestep(args.stepnum)[-1]
        data = np.linalg.norm(data, axis=-1)
        para = h.para

        m1, X1, Y1, C1 = direct_plot(fig1, ax1, data, para, 'xy', 
                cmap=args.colormap,
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize, 
                cbtitle=args.units)
        m2, X2, Y2, C2 = direct_plot(fig2, ax2, data, para, 'xz', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize, 
                cbtitle=args.units)

    else:
        h = hr(args.prefix,args.variable.name)
        var_sanity_check(h.isScalar, args.variable.coordinate)

        data = h.get_timestep(args.stepnum)[-1]
        if not h.isScalar:
            data = data[:,:,:,args.variable.coordinate]
        if str(args.variable).startswith('bt'):
            data = h.para['ion_amu']*1.6726219e-27/1.60217662e-19 * data # ion gyrofrequency -> T
        para = h.para

        m1, X1, Y1, C1 = direct_plot(fig1, ax1, data, para, 'xy', 
                cmap=args.colormap,
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize, 
                cbtitle=args.units)
        m2, X2, Y2, C2 = direct_plot(fig2, ax2, data, para, 'xz', 
                cmap=args.colormap, 
                norm=args.norm, 
                vmin=args.vmin, 
                vmax=args.vmax, 
                mccomas=args.mccomas, 
                titlesize=args.titlesize, 
                labelsize=args.labelsize, 
                ticklabelsize=args.ticklabelsize, 
                cbtitle=args.units)
Exemplo n.º 10
0
for p in paras:
    grids.append(p['grid_points'])


def profile(interp_points, grid_points, grid_data):
    rgi = RegularGridInterpolator(points=grid_points,
                                  values=grid_data,
                                  bounds_error=False)
    return rgi(interp_points)


points, o = NH_tools.trajectory(NH_tools.close_start, NH_tools.close_end, 60.)

profiles = []
for pre, grid in zip(prefixes, grids):
    v = hr(pre, 'up').get_last_timestep()[-1]
    vdata = np.linalg.norm(v, axis=-1)
    profiles.append(profile(points, grid, vdata))

plt.style.use('pluto-paper')
fig, vax = plt.subplots(figsize=figaspect(0.6))
if args.which == 'shell':
    vax.set_title(
        "Simulation Flyby Velocity Profiles\nWith SW shell distribution")
elif args.which == 'no-shell':
    vax.set_title(
        "Simulation Flyby Velocity Profiles\nWithout SW shell distribution")
else:
    vax.set_title("Simulation Flyby Velocity Profiles")

vax.set_xlabel('X ($R_p$)')
Exemplo n.º 11
0
#!/usr/bin/python
import argparse
import HybridHelper as hh
from HybridReader2 import HybridReader2 as hr
import FortranFile as ff
import matplotlib.pyplot as plt
import numpy

hh.parser.add_argument('filenum',
                       type=int,
                       help='Which time_stepping_error file to open')
args = hh.parser.parse_args()

params = hr(args.prefix, args.variable).para

# open desired FortranFile
f = ff.FortranFile('./' + args.prefix + '/c.time_stepping_error_' +
                   str(args.filenum) + '.dat')


def read_entry(f):
    entry = {}
    entry['step'] = f.readInts()
    assert len(entry['step']) == 1
    entry['step'] = entry['step'][0]
    entry['rank'] = f.readInts()
    assert len(entry['rank']) == 1
    entry['rank'] = int(entry['rank'][0])
    entry['indicies'] = f.readInts(
    ) - 1  # subtract 1 to convert from 1-based indexing to 0-based indexing
    entry['coords'] = f.readReals()
Exemplo n.º 12
0
def _espec_v4(data, options=None):
    if options is None:
        options= {'colorbars':['Blues','Greens','Reds']}

    # Load data from IDL
    spectrograms_by_species = data['spectrograms_by_species']
    t = data['times']
    x = data['positions'][0,:]
    y = data['positions'][1,:]
    z = data['positions'][2,:]
    o = data['orientations']
    ebins = data['ebins']

    # Separate parts
    H = spectrograms_by_species[:,:,0]
    He = spectrograms_by_species[:,:,1]
    CH4 = spectrograms_by_species[:,:,2]

    cnt_arr = H+He+CH4

    # Build masked arrays for plotting the dominant species
    mH = masked_array(cnt_arr, mask=(~logical_and(H>He,H>CH4)))
    mHe = masked_array(cnt_arr, mask=(~logical_and(He>H,He>CH4)))
    mCH4 = masked_array(cnt_arr, mask=~logical_and(CH4>H,CH4>He))
    
    # Setup subplot and colorbar axes
#    fig = plt.figure(figsize = (rcParams['figure.figsize'][0], 2*rcParams['figure.figsize'][1]))
#    gs = gridspec.GridSpec(8,1)
#    ax_spec  = plt.subplot(gs[0,0])
#    ax_theta = plt.subplot(gs[1,0], sharex=ax_spec)
#    ax_phi   = plt.subplot(gs[2,0], sharex=ax_spec)
#    ax_spin  = plt.subplot(gs[3,0], sharex=ax_spec)
#
#    ax_xy    = plt.subplot(gs[4:6,0])
#    ax_xz    = plt.subplot(gs[6:8,0], sharex=ax_xy)


    fig, (ax_spec, ax_theta, ax_phi, ax_spin, ax_xy, ax_xz) = plt.subplots(nrows=6, sharex=True, 
            gridspec_kw={'height_ratios':[1,1,1,1,2,3]}, 
            figsize=(rcParams['figure.figsize'][0], 2.25*rcParams['figure.figsize'][1]))

    fig.subplots_adjust(right=0.8, hspace=0.05)

    spec_pos = ax_spec.get_position()
    cbar_CH4 = fig.add_axes([spec_pos.x1+.01, spec_pos.y0+.01, 0.1/3, spec_pos.height-.02])
    cbar_CH4_pos = cbar_CH4.get_position()
    cbar_He = fig.add_axes([cbar_CH4_pos.x1, spec_pos.y0+.01, 0.1/3, spec_pos.height-.02])
    cbar_He_pos = cbar_He.get_position()
    cbar_H = fig.add_axes([cbar_He_pos.x1, spec_pos.y0+.01, 0.1/3,spec_pos.height-.02])

    # Plot spectrograms and make colorbars
    Hhist = ax_spec.pcolormesh(t, ebins, mH, norm=LogNorm(), cmap=options['colorbars'][0],
            vmin=1e-3, vmax=1e4)
    Hcb = fig.colorbar(Hhist, cax=cbar_H)
    Hcb.ax.minorticks_on()

    Hehist = ax_spec.pcolormesh(t, ebins, mHe, norm=LogNorm(), cmap=options['colorbars'][1],
            vmin=1e-3, vmax=1e4)
    Hecb = fig.colorbar(Hehist, cax=cbar_He, format="")

    CH4hist = ax_spec.pcolormesh(t, ebins, mCH4, norm=LogNorm(), cmap=options['colorbars'][2],
            vmin=1e-3, vmax=1e4)
    CH4cb = fig.colorbar(CH4hist, cax=cbar_CH4, format="")

    # Plot orientations
    ax_theta.plot(t, o[0], marker='o', markersize=1.3, linestyle='None', color='black')
    ax_phi.plot(t,   o[1], marker='o', markersize=1.3, linestyle='None', color='black')
    ax_spin.plot(t,  o[2], marker='o', markersize=1.3, linestyle='None', color='black')

    ax_theta.set_ylim(-180,180)
    ax_phi.set_ylim(-180,180)
    ax_spin.set_ylim(-180,180)

    # Plot positions
    h = hr('/home/nathan/data/2017-Wed-Aug-30/pluto-1/databig','np')
    n = h.get_last_timestep()[-1]

    # Get grid spacing
    qx = h.para['qx']
    qy = h.para['qy']
    qzrange = h.para['qzrange']

    # Find the center index of the grid
    cx = h.para['nx']/2
    cy = h.para['ny']/2
    cz = h.para['zrange']/2

    # the offset of pluto from the center isn't always availible
    try:
        po = h.para['pluto_offset']
    except KeyError:
        print("Couldn't get pluto_offset. It has been assumed to be 30, but it probably isn't.")
        po = 30

    # Set constatnt for Pluto radius 
    Rp = 1187. # km

    # Shift grid so that Pluto lies at (0,0,0) and convert from km to Rp
    qx = (qx - qx[len(qx)/2 + po])/Rp
    qy = (qy - qy[len(qy)/2])/Rp
    qzrange = (qzrange - qzrange[len(qzrange)/2])/Rp

    qt = [NH_tools.time_at_pos(x*Rp) for x in qx]

    T,Y = np.meshgrid(qt,qy)
    ax_xy.pcolormesh(T,Y,n[:,:,cz].transpose(), cmap='viridis', norm=LogNorm())

    T,Z = np.meshgrid(qt,qzrange)
    ax_xz.pcolormesh(T,Z,n[:,cy,:].transpose(), cmap='viridis', norm=LogNorm())

    ax_xy.plot(t, y/Rp-np.max(qy), color='black', linewidth=2)
    ax_xz.plot(t, np.zeros(z.shape), color='black', linewidth=2)

    # Set title, labels and adjust figure
    ax_spec.set_xlim(np.min(t), np.max(t))
    ax_spec.set_ylim(5e1, 1e4)
    ax_spec.set_title("Synthetic SWAP Energy Spectrogram", y=1.4)
    Hecb.ax.set_title('COIN (Hz)', fontdict={'fontsize':'small'})
    ax_spec.set_yscale('log')
    ax_spec.set_ylabel('Energy/Q ($eV/q$)')
    ax_theta.set_ylabel('Sun Theta\nAngle (deg)')
    ax_phi.set_ylabel('Sun Phi\nAngle (deg)')
    ax_spin.set_ylabel('Spin\nAngle (deg)')
    ax_xz.set_xlabel('Time (UTC)')

    ax_xy.set_ylabel('Y ($R_p$)')
    ax_xz.set_ylabel('Z ($R_p$)')
    ax_xy.set_ylim(np.min(qy), np.max(qy))
    ax_xz.set_ylim(1.5*np.min(qy), 1.5*np.max(qy))

    ax_xz.set_xticklabels([sp.timout(et, 'HR:MN:SC') for et in ax_spec.get_xticks()], rotation=-20, horizontalalignment='left')

    ax_twin = ax_spec.twiny()
    ax_twin.set_xlabel('X ($R_p$)')
    ax_twin.set_xlim(*ax_spec.get_xlim())
    ax_twin.set_xticks(ax_spec.get_xticks())
    ax_twin.set_xticklabels(['{0:.2f}'.format(NH_tools.pos_at_time(et)/1187) for et in ax_spec.get_xticks()], y=1.05)

    # This breaks the convention of previous versions
    return fig, None