Exemplo n.º 1
0
def plot_syj_against_j(j1=2, j2=6, wtype=1, theoretical_Hurst=0.8, idx_simulation=0, OUTPUT_FILE=None):
    idx = int(theoretical_Hurst * 10) - 1
    if(idx < 0 or idx > 10):
        idx = 7
    simulation = np.cumsum(opas.get_simulation(), axis=-1)
    
    dico = wtspecq_statlog3(simulation[idx,idx_simulation], 2, 1, np.array(2),
                            int(np.log2(simulation[idx,idx_simulation].shape[0])), 0, 0)
    Elog = dico['Elogmuqj'][0]
    Varlog = dico['Varlogmuqj'][0]
    nj = dico['nj']
    regression = regrespond_det2(Elog, Varlog, nj, j1, j2, wtype)
    font = {'family' : 'normal',
        'weight' : 'bold',
        'size'   : 22}
    changefont('font', **font)
    jmax = len(Elog)

    j_indices = np.arange(0,jmax + 2)
    fig = plt.plot(j_indices, j_indices * regression['Zeta'] + regression['aest'])
    plt.text(j_indices.mean() - 2 * j_indices.var() / jmax, Elog.mean() + Elog.var() / jmax, r'Hurst Exponent = %.2f'%(regression['Zeta']/2))

    j_indices = np.arange(0,jmax) + 1
    plt.plot(j_indices, Elog, 'ro')
    plt.xlabel('scale j')
    plt.ylabel('log Sy(j,2)')
    if not OUTPUT_FILE is None:
        plt.savefig(OUTPUT_FILE)
    plt.show()
Exemplo n.º 2
0
def compute_estimators(length_simul):
    simulations = opas.get_simulation()[:,:,:length_simul]
    shape = (9, 1000, length_simul)
    simulations = np.reshape(simulations, (9000, length_simul))
    N = simulations.shape[0]

    wavelet_estim = np.zeros(N)
    nb_vanishmoment = 2
    j1 = 2
    j2 = 6
    wtype = 1
    simulationsCS = np.cumsum(simulations, axis=-1)
    dico = wtspecq_statlog32(simulationsCS, nb_vanishmoment, 1, np.array(2),
                                int(np.log2(length_simul)), 0, 0)
    Elog = dico['Elogmuqj'][:, 0]
    Varlog = dico['Varlogmuqj'][:, 0]
    nj = dico['nj']
    for j in np.arange(0, N):
        sortie = regrespond_det2(Elog[j], Varlog[j], 2, nj, j1, j2, wtype)
        wavelet_estim[j] = sortie['Zeta'] / 2. 
    wavelet_estim = np.reshape(wavelet_estim, shape[:-1])

    welch_estim = welch_estimator(simulations)
    welch_estim = np.reshape(welch_estim, shape[:-1])

    dfa_estim = hurstexp_dfa(simulations, CumSum=1)
    dfa_estim = np.reshape(dfa_estim, shape[:-1])

    return wavelet_estim, welch_estim, dfa_estim
Exemplo n.º 3
0
def compute_dfa_estimators(length_simul=4069, printout=0):
    simulations = opas.get_simulation()[:,:,:length_simul]
    shape = (9, 1000, length_simul)
    simulations = np.reshape(simulations, (9000, length_simul))
    N = simulations.shape[0]
    j1 = 2
    j2 = 6
    wtype = 1
    dfa_estim, dico = hurstexp_dfa(simulations, CumSum=1, polyfit=1)
    dfa_estim1, dico = hurstexp_dfa(simulations, CumSum=1)
    dfa_estim2, dico = hurstexp_dfa(simulations, CumSum=1, wtype=0)
    k = 0

    if printout!=0:
        f, myplot = plt.subplots(1, 3, sharey=True)
        f.suptitle('Estimation of Hurst coefficient of fGn\nof length 514 by dfa implementation')

        for idx_subplot, (title, stat) in enumerate(zip(['dfa0', 'dfa1', 'dfa2'], [np.reshape(dfa_estim, shape[:-1]),
                                                        np.reshape(dfa_estim1, shape[:-1]),
                                                        np.reshape(dfa_estim2, shape[:-1])])):
            myplot[idx_subplot].set_title(title)
            bp = myplot[idx_subplot].boxplot(stat.T)
            for line in bp['medians']:
                x, y = line.get_xydata()[1]
                if(k <6):
                    myplot[idx_subplot].text(x + 1.5, y - 0.02, '%.3f\n%.3e' % (np.mean(stat[k, :]),
                                                                        np.var(stat[k,:])),
                                    horizontalalignment='center')
                else:
                    myplot[idx_subplot].text(x - 2, y - 0.02, '%.3f\n%.3e' % (np.mean(stat[k, :]),
                                                                        np.var(stat[k, :])),
                                        horizontalalignment='center')
                k += 1
            k = 0
        plt.show()

    return dfa_estim, dfa_estim1, dfa_estim2