Exemplo n.º 1
0
def sort_dataframe(df_data, df_filenames):

    correct_order = Input.load_testdata_filenames()
    current_order = list(df_filenames.values)
    indices = [current_order.index(filename) for filename in correct_order]
    df_data = df_data.reindex(indices)
    df_data = df_data.reset_index() #reset index --> adds new indices, old indices become column 'index'
    return df_data.drop('index', axis=1) #remove this new column 'index'
Exemplo n.º 2
0
import numpy as np
from IO import Output
import pickle
from sklearn.svm import LinearSVC

'''
Helper function to use with the grouping of the dataframe, turns 3 rows of coordinates into a single row
'''
def transformXY(coords):
    return pd.Series(np.asarray(coords).ravel())

#Load the file names of the various datasets
trainset_filenames = Input.load_trainset_filenames()
validationset_filenames = Input.load_validationset_filenames()
traindata_filenames = Input.load_traindata_filenames()
testset_filenames = Input.load_testdata_filenames()

#Load the features
feat = pd.read_csv('skinTrainFeatures.csv', index_col = 0)

#Select the features for each dataset
x_trainset = feat.ix[trainset_filenames]
x_validationset = feat.ix[validationset_filenames]  
x_testset = feat.ix[testset_filenames]  
x_traindata = feat.ix[traindata_filenames]

#Load the labels for each dataset
y_trainset = np.asarray(Input.load_trainset_labels())
y_validationset = np.asarray(Input.load_validationset_labels())
y_traindata = np.asarray(Input.load_traindata_labels())