def plot_mumu_distr(infile, outdir, out_formats=["pdf", "png"]):
    """ Plot the distribution that is stored in the given file.
  """
    base_name = os.path.basename(infile).replace(".csv", "")

    log.debug("Reading file: {}.csv".format(base_name))
    reader = IOR.Reader(infile)

    # Get the pandas dataframe for the cut histograms
    df = reader["Data"]

    # Get the data
    x_name = "costh_f_star"
    x = np.array(df["BinCenters:{}".format(x_name)])
    y = np.array(df["Cross sections"])

    xmin = np.array(np.amin(df["BinLow:{}".format(x_name)]))
    xmax = np.array(np.amax(df["BinUp:{}".format(x_name)]))

    # Bin counting assumes that bins are not binned thinner than 1/1000 and that
    # absolute values are of order 0.1-1
    nbins = len(np.unique((x * 10000.).astype(int)))

    # Create the figure and plot
    fig = plt.figure(figsize=(6.5, 5), tight_layout=True)
    ax = plt.gca()
    ax.hist(x=x,
            weights=y,
            bins=nbins,
            range=(xmin, xmax),
            ls="-",
            lw=3,
            histtype=u'step')

    # Useful limits
    ax.set_xlim(xmin, xmax)
    # ax.set_ylim(0, 1.1*ax.get_ylim()[1])

    # Useful labels
    ax.set_xlabel("${}$".format(PN.observable_str(x_name, "mumu")))
    ax.set_ylabel("$d\\sigma [$fb$]$")

    # Mark which process it is
    chirality = IOFH.find_chirality(base_name)
    Z_direction = IOFH.find_Z_direction(base_name)
    mass_label = IOFH.find_2f_mass_label(base_name)
    process_str = "${}$".format(
        PN.difermion_process_str("mu", chirality, mass_label, Z_direction))
    ax.set_title(process_str)

    # Save the plot in files
    for out_format in out_formats:
        format_dir = "{}/{}".format(outdir, out_format)
        IOSH.create_dir(format_dir)
        fig.savefig("{}/{}_{}.{}".format(format_dir, base_name, x_name,
                                         out_format),
                    transparent=True,
                    bbox_inches='tight')
Exemplo n.º 2
0
def main():
    log.basicConfig(level=log.INFO)  # Set logging level
    PDF.set_default_mpl_format()
    input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/4f_WW_sl/PrEWInput"
    output_dir = input_dir + "/shape_checks/WWShapePlots"

    log.info("Looking in dir: {}".format(input_dir))
    for file_path in tqdm(IOSH.find_files(input_dir, ".csv"), desc="files"):
        if "tau" in file_path:
            continue  # Skipping tau distributions, not use right now
        plot_WW_distr(file_path, output_dir)
def main():
    log.basicConfig(level=log.INFO)  # Set logging level
    PDF.set_default_mpl_format()
    input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction"+\
                "/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925"
    output_dir = input_dir + "/shape_checks/2fShapePlots"

    log.info("Looking in dir: {}".format(input_dir))
    for file_path in tqdm(IOSH.find_files(input_dir, ".csv"), desc="files"):
        if not "2f_mu" in file_path:
            continue  # Only draw mumu distributions
        plot_mumu_distr(file_path, output_dir)
Exemplo n.º 4
0
def create_1D_projection_plot(i_coord, x, y, xmin, xmax, nbins, angles,
                              base_name, outdir, out_formats):
    """ Create a 1D projection plot for the given coordinate.
  """

    # Create the figure and plot
    fig = plt.figure(figsize=(6.5, 5), tight_layout=True)
    ax = plt.gca()
    ax.hist(x=x[i_coord],
            weights=y,
            bins=nbins[i_coord],
            range=(xmin[i_coord], xmax[i_coord]),
            ls="-",
            lw=3,
            histtype=u'step')

    # Useful limits
    ax.set_xlim(xmin[i_coord], xmax[i_coord])
    ax.set_ylim(0, 1.1 * ax.get_ylim()[1])

    # Useful labels
    angle = angles[i_coord]
    ax.set_xlabel("${}$".format(PN.observable_str(angle, "WW")))
    ax.set_ylabel("$d\\sigma [$fb$]$")

    # Mark which process it is
    chirality = IOFH.find_chirality(base_name)
    mu_charge = IOFH.find_lep_charge(base_name, "mu")
    process_str = "${}$".format(PN.WW_process_str(chirality, mu_charge))
    ax.set_title(process_str)

    # Save the plot in files
    for out_format in out_formats:
        format_dir = "{}/{}".format(outdir, out_format)
        IOSH.create_dir(format_dir)
        fig.savefig("{}/{}_{}.{}".format(format_dir, base_name, angle,
                                         out_format),
                    transparent=True,
                    bbox_inches='tight')
import IO.Reader as IOR
import IO.SysHelpers as IOSH
import Plotting.DefaultFormat as PDF
import Plotting.Naming as PN
import Shape.ShapeFunctions as SSF
import Shape.ShapeTesting as SST

log.basicConfig(level=log.INFO) # Set logging level
PDF.set_default_mpl_format()
MCLumi = 5000 # MC Statistics is 5ab^-1

input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925"
# input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925/TrueAngle"

output_dir = input_dir + "/shape_checks"
IOSH.create_dir(output_dir)

log.info("Looking in dir: {}".format(input_dir))
for file_path in IOSH.find_files(input_dir, ".csv"):
  # Read the input file
  base_name = os.path.basename(file_path).replace(".csv","")
  log.info("Reading file: {}.csv".format(base_name))
  reader = IOR.Reader(file_path)

  # Get the pandas dataframe for the cut histograms
  angle = "costh_f_star_true" if "TrueAngle" in input_dir else "costh_f_star"
  df = reader["Data"]
  bin_vals = np.array(df["Cross sections"])
  bin_middles = np.array(df["BinCenters:{}".format(angle)])
  edges_min = np.array(df["BinLow:{}".format(angle)])
  edges_max = np.array(df["BinUp:{}".format(angle)])
import IO.Reader as IOR
import IO.SysHelpers as IOSH
import Plotting.DefaultFormat as PDF
import Plotting.Naming as PN
import Shape.ShapeFunctions as SSF
import Shape.ShapeTesting as SST

log.basicConfig(level=log.INFO)  # Set logging level
PDF.set_default_mpl_format()
MCLumi = 5000  # MC Statistics is 5ab^-1

input_dir_nocor = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925"
input_dir_sicor = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925/TrueAngle"

output_dir = input_dir_nocor + "/ISR_shape_checks"
IOSH.create_dir(output_dir)

file_pairs = [
    ["2f_mu_81to101_BZ_250_eLpR.csv", "2f_mu_81to101_BZ_true_250_eLpR.csv"],
    ["2f_mu_81to101_BZ_250_eRpL.csv", "2f_mu_81to101_BZ_true_250_eRpL.csv"],
    ["2f_mu_81to101_FZ_250_eLpR.csv", "2f_mu_81to101_FZ_true_250_eLpR.csv"],
    ["2f_mu_81to101_FZ_250_eRpL.csv", "2f_mu_81to101_FZ_true_250_eRpL.csv"],
]

for file_pair in file_pairs:
    # Read the input file
    base_name = file_pair[0].replace(".csv", "")
    log.info("Processing: {}".format(base_name))
    reader_nocor = IOR.Reader(input_dir_nocor + "/" + file_pair[0])
    reader_sicor = IOR.Reader(input_dir_sicor + "/" + file_pair[1])
Exemplo n.º 7
0
def create_2D_projection_plot(x, y, xmin, xmax, nbins, angles, base_name,
                              outdir, out_formats):
    """ Create a plot showing the 3 different 2D projections of the 3D 
      distribution.
  """
    # Figure basics
    fig, axs = plt.subplots(2,
                            3,
                            sharex='col',
                            sharey='row',
                            figsize=(12, 9),
                            tight_layout=True,
                            gridspec_kw={
                                'hspace': 0.0,
                                'wspace': 0.0
                            })
    (ax1, ax_empty, _1), (ax2, ax3, _2) = axs
    _1.axis('off')
    _2.axis('off')
    ax_empty.axis('off')

    # Draw ticks only on the relevant axes
    ax1.tick_params(bottom=False,
                    top=True,
                    left=True,
                    right=True,
                    labelleft=False,
                    labeltop=True,
                    labelright=True)
    ax2.tick_params(labelbottom=False, labelleft=False)
    ax3.tick_params(bottom=True,
                    top=True,
                    left=False,
                    right=True,
                    labeltop=True,
                    labelright=True,
                    labelbottom=False)

    # Actually plot the histograms
    h1 = add_hist2d(ax1, x, y, nbins, xmin, xmax, 0, 1)
    h2 = add_hist2d(ax2, x, y, nbins, xmin, xmax, 0, 2)
    h3 = add_hist2d(ax3, x, y, nbins, xmin, xmax, 1, 2)

    # Set a useful common color scale on all histograms
    cmax = np.amax([np.amax(y_h) for y_h in (h1[0], h2[0], h3[0])])
    for h in [h1, h2, h3]:
        h[-1].set_clim(0, cmax)

    # Set useful axis limits
    ax1.set_xlim((xmin[0], xmax[0]))
    ax1.set_ylim((xmin[1], xmax[1]))
    ax3.set_xlim((xmin[1], xmax[1]))
    ax3.set_ylim((xmin[2], xmax[2]))

    # Create small white lines between the plots
    for ax_line in (ax2.spines['top'], ax2.spines['right'],
                    ax1.spines['bottom'], ax3.spines['left']):
        ax_line.set_linewidth(3)
        ax_line.set_color('white')

    # Proper labelling of the axes
    label_args = {"fontsize": 30, "ha": 'center'}
    ax1.text(0.5,
             1.2,
             "${}$".format(PN.observable_str(angles[0], "WW")),
             transform=ax1.transAxes,
             **label_args)
    ax_empty.text(0.5,
                  0.5,
                  "${}$".format(PN.observable_str(angles[1], "WW")),
                  transform=ax_empty.transAxes,
                  **label_args)
    ax3.text(1.12,
             0.65,
             "${}$".format(PN.observable_str(angles[2], "WW")),
             transform=ax3.transAxes,
             **label_args)

    # Add a colorbar
    # cbar_title = "$\\frac{d^2\\sigma}{dx_1dx_2} [$fb$^{{-1}}]$"
    cbar_title = "$d\\sigma [$fb$]$"
    ax_whole = fig.add_subplot(1, 6, 5, visible=False)
    fig.colorbar(h1[-1], ax=ax_whole, label=cbar_title, fraction=1.0)
    # ax_whole.text(0.5, 0.65, "$d\\sigma [$fb$^{{-1}}]$",
    #               transform=ax_whole.transAxes, **label_args)

    # Mark which process it is
    chirality = IOFH.find_chirality(base_name)
    mu_charge = IOFH.find_lep_charge(base_name, "mu")
    process_str = "${}$".format(PN.WW_process_str(chirality, mu_charge))
    ax_empty.text(0.5,
                  1.2,
                  process_str,
                  transform=ax_empty.transAxes,
                  bbox=dict(facecolor='none',
                            edgecolor='black',
                            boxstyle='round'),
                  **label_args)

    # Save the plot in files
    for out_format in out_formats:
        format_dir = "{}/{}".format(outdir, out_format)
        IOSH.create_dir(format_dir)
        fig.savefig("{}/{}.{}".format(format_dir, base_name, out_format),
                    transparent=True,
                    bbox_inches='tight')
    plt.close(fig)