def findL(S): n = len(S) IoC = IOC(S) ioc = IoC.calcIOC() ill = (0.027 * n) / ((ioc * (n - 1)) + 0.065 - (0.038 * n)) if (ill == 0): ill = 1 return ((ill))
def _calcIOC(self, string): """this calulates the IOC from a passed string""" ob = IOC(string) ioc = ob.calcIOC() if (self.verbose == 1): print(ioc) return (ioc)
def __init__(self, url_site=None, verbose=False): # Estructura del diccionario -> {"raiz_cms": [Objeto_Analizer (, url_donde_se_encontro_websh)]} self.cms_dict = {} self.current_site = url_site self.lock = Lock() self.verbose = verbose self.ioc = IOC(verbose=verbose)
def calcIOC(string, verbose=0): """this calulates the IOC from a passed string""" ob = IOC(string) ioc = ob.calcIOC if (verbose == 1): print(ioc) return (ioc)
goal_q = toQuaternion(0, [0, 0, 1]) goal_w_B = [0, 0, 0] target = goal_p_I + goal_v_I + goal_q + goal_w_B ############################### Perform optimal control ############################### T = 5 # number of control intervals dt = 0.1 nT = int(10 / 0.1) OCsys = OC() OCsys.getTraj(dyn, init, target, T) x_his = OCsys.x_his u_his = OCsys.u_his ############################### IOC ############################### IOCsys = IOC() IOCsys.getdPhi(OCsys.x_his, OCsys.u_his, OCsys.PHI) IOCsys.getdf(OCsys.x_his, OCsys.u_his, OCsys.DYN) IOCsys.IOC_main(IOCsys.dfdx_his, IOCsys.dfdu_his, IOCsys.dphidx_his, IOCsys.dphidu_his) omega = IOCsys.omega / min(IOCsys.omega) #normalize omega print('Omega =', omega) ############################### Pendulum and LTI trajectory ############################### if dyn == 'LTI' or dyn == 'Pendulum': x_his = np.concatenate(x_his, axis=1) u_his = np.concatenate(u_his, axis=1) fig, axs = plt.subplots(2)