Exemplo n.º 1
0
    def augment(self,
                n,
                hflip=False,
                vflip=False,
                scale_to_percent=1.0,
                scale_axis_equally=True,
                rotation_deg=0,
                shear_deg=0,
                translation_x_px=0,
                translation_y_px=0,
                brightness_change=0.0,
                noise_mean=0.0,
                noise_std=0.0):
        """Generates randomly augmented versions of the image.
        Also augments the keypoints accordingly.

        Args:
            n                   Number of augmentations to generate.
            hflip               Allow horizontal flipping (yes/no).
            vflip               Allow vertical flipping (yes/no)
            scale_to_percent    How much scaling/zooming to allow. Values are around 1.0.
                                E.g. 1.1 is -10% to +10%
                                E.g. (0.7, 1.05) is -30% to 5%.
            scale_axis_equally  Whether to enforce equal scaling of x and y axis.
            rotation_deg        How much rotation to allow. E.g. 5 is -5 degrees to +5 degrees.
            shear_deg           How much shearing to allow.
            translation_x_px    How many pixels of translation along the x axis to allow.
            translation_y_px    How many pixels of translation along the y axis to allow.
            brightness_change   How much change in brightness to allow. Values are around 0.0.
                                E.g. 0.2 is -20% to +20%.
            noise_mean          Mean value of gaussian noise to add.
            noise_std           Standard deviation of gaussian noise to add.
        Returns:
            List of ImageWithKeypoints
        """
        assert n >= 0
        result = []
        if n == 0:
            return result

        matrices = create_aug_matrices(n,
                                       img_width_px=self.get_width(),
                                       img_height_px=self.get_height(),
                                       scale_to_percent=scale_to_percent,
                                       scale_axis_equally=scale_axis_equally,
                                       rotation_deg=rotation_deg,
                                       shear_deg=shear_deg,
                                       translation_x_px=translation_x_px,
                                       translation_y_px=translation_y_px)
        for i in range(n):
            img = self.copy()
            matrix = matrices[i]

            # random horizontal / vertical flip
            if hflip and random.random() > 0.5:
                img.image_arr = np.fliplr(img.image_arr)
                img.keypoints.fliplr(img)
            if vflip and random.random() > 0.5:
                img.image_arr = np.flipud(img.image_arr)
                img.keypoints.flipud(img)

            # random brightness adjustment
            by_percent = random.uniform(1.0 - brightness_change,
                                        1.0 + brightness_change)
            img.image_arr = img.image_arr * by_percent

            # gaussian noise
            # numpy requires a std above 0
            if noise_std > 0:
                img.image_arr = img.image_arr \
                                + (255 * np.random.normal(noise_mean, noise_std,
                                                          (img.image_arr.shape)))

            # clip to 0-255
            img.image_arr = np.clip(img.image_arr, 0, 255).astype(np.uint8)

            arr = tf.warp(img.image_arr, matrix,
                          mode="constant")  # projects to float 0-1
            img.image_arr = np.array(arr * 255, dtype=np.uint8)
            img.keypoints.warp(img, matrix)
            result.append(img)

        return result
Exemplo n.º 2
0
    def augment(
        self,
        n,
        hflip=False,
        vflip=False,
        scale_to_percent=1.0,
        scale_axis_equally=True,
        rotation_deg=0,
        shear_deg=0,
        translation_x_px=0,
        translation_y_px=0,
        brightness_change=0.0,
        noise_mean=0.0,
        noise_std=0.0,
    ):
        """Generates randomly augmented versions of the image.
        Also augments the keypoints accordingly.

        Args:
            n                   Number of augmentations to generate.
            hflip               Allow horizontal flipping (yes/no).
            vflip               Allow vertical flipping (yes/no)
            scale_to_percent    How much scaling/zooming to allow. Values are around 1.0.
                                E.g. 1.1 is -10% to +10%
                                E.g. (0.7, 1.05) is -30% to 5%.
            scale_axis_equally  Whether to enforce equal scaling of x and y axis.
            rotation_deg        How much rotation to allow. E.g. 5 is -5 degrees to +5 degrees.
            shear_deg           How much shearing to allow.
            translation_x_px    How many pixels of translation along the x axis to allow.
            translation_y_px    How many pixels of translation along the y axis to allow.
            brightness_change   How much change in brightness to allow. Values are around 0.0.
                                E.g. 0.2 is -20% to +20%.
            noise_mean          Mean value of gaussian noise to add.
            noise_std           Standard deviation of gaussian noise to add.
        Returns:
            List of ImageWithKeypoints
        """
        assert n >= 0
        result = []
        if n == 0:
            return result

        matrices = create_aug_matrices(
            n,
            img_width_px=self.get_width(),
            img_height_px=self.get_height(),
            scale_to_percent=scale_to_percent,
            scale_axis_equally=scale_axis_equally,
            rotation_deg=rotation_deg,
            shear_deg=shear_deg,
            translation_x_px=translation_x_px,
            translation_y_px=translation_y_px,
        )
        for i in range(n):
            img = self.copy()
            matrix = matrices[i]

            # random horizontal / vertical flip
            if hflip and random.random() > 0.5:
                img.image_arr = np.fliplr(img.image_arr)
                img.keypoints.fliplr(img)
            if vflip and random.random() > 0.5:
                img.image_arr = np.flipud(img.image_arr)
                img.keypoints.flipud(img)

            # random brightness adjustment
            by_percent = random.uniform(1.0 - brightness_change, 1.0 + brightness_change)
            img.image_arr = img.image_arr * by_percent

            # gaussian noise
            # numpy requires a std above 0
            if noise_std > 0:
                img.image_arr = img.image_arr + (255 * np.random.normal(noise_mean, noise_std, (img.image_arr.shape)))

            # clip to 0-255
            img.image_arr = np.clip(img.image_arr, 0, 255).astype(np.uint8)

            arr = tf.warp(img.image_arr, matrix, mode="nearest")  # projects to float 0-1
            img.image_arr = np.array(arr * 255, dtype=np.uint8)
            img.keypoints.warp(img, matrix)
            result.append(img)

        return result
Exemplo n.º 3
0
def main():
    """Measure time required to generate augmentations matrices and to apply
    them.
    """
    batch_size = 64
    nb_runs = 20

    # Measure time required to generate 100k augmentation matrices
    """
    print("Generating 100 times 1000 augmentation matrices of size 64x64...")
    start = time.time()
    for _ in range(100):
        create_aug_matrices(1000, 64, 64,
                            scale_to_percent=1.5, scale_axis_equally=False,
                            rotation_deg=20, shear_deg=20,
                            translation_x_px=5, translation_y_px=5)
    print("Done in %.8f" % (time.time() - start,))
    """

    # Test Performance on 64 images of size 512x512 pixels
    image = data.lena()
    images = np.resize(
        image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
    augmenter = ImageAugmenter(image.shape[0],
                               image.shape[1],
                               hflip=True,
                               vflip=True,
                               scale_to_percent=1.3,
                               scale_axis_equally=False,
                               rotation_deg=25,
                               shear_deg=10,
                               translation_x_px=5,
                               translation_y_px=5)
    print("Running tests on %d images of shape %s" %
          (batch_size, str(image.shape)))
    run_tests(augmenter, images, nb_runs)
    print("")

    print("Running tests on %d images of shape %s" %
          (batch_size, str(image.shape)))
    print("(With 1000 pregenerated matrices)")
    augmenter.pregenerate_matrices(1000)
    run_tests(augmenter, images, nb_runs)
    print("")

    # Test Performance on 64 images of size 64x64 pixels
    image = data.lena()
    image = misc.imresize(image, (64, 64))
    images = np.resize(
        image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
    augmenter = ImageAugmenter(image.shape[0],
                               image.shape[1],
                               hflip=True,
                               vflip=True,
                               scale_to_percent=1.3,
                               scale_axis_equally=False,
                               rotation_deg=25,
                               shear_deg=10,
                               translation_x_px=5,
                               translation_y_px=5)
    print("Running tests on %d images of shape %s" %
          (batch_size, str(image.shape)))
    run_tests(augmenter, images, nb_runs)

    print("Running tests on %d images of shape %s" %
          (batch_size, str(image.shape)))
    print("(With 1000 pregenerated matrices)")
    augmenter.pregenerate_matrices(1000)
    run_tests(augmenter, images, nb_runs)
    print("")

    # Time required to augment 1,000,000 images of size 32x32
    print("Augmenting 1000 batches of 1000 lena images (1 million total)" \
          ", each of size 32x32...")
    image = data.lena()
    image = misc.imresize(image, (32, 32))
    batch_size = 1000
    images = np.resize(
        image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
    augmenter = ImageAugmenter(image.shape[1],
                               image.shape[0],
                               hflip=True,
                               vflip=True,
                               scale_to_percent=1.3,
                               scale_axis_equally=False,
                               rotation_deg=25,
                               shear_deg=10,
                               translation_x_px=5,
                               translation_y_px=5)
    augmenter.pregenerate_matrices(1000)

    start = time.time()
    for _ in range(1000):
        augmenter.augment_batch(images)
    print("Done in %.8fs" % (time.time() - start, ))
    print("")

    # Time required to augment 1,000,000 images of size 32x32
    # but using only one matrix without the class (no library overhead from
    # ImageAugmenter)
    # Notice that this does not include horizontal and vertical flipping,
    # which is done via numpy in the ImageAugmenter class.
    print("Augmenting 1000 batches of 1000 lena images (1 million total)" \
          ", each of size 32x32, using one matrix directly (no ImageAugmenter " \
          "class)...")
    matrices = create_aug_matrices(1,
                                   image.shape[1],
                                   image.shape[0],
                                   scale_to_percent=1.3,
                                   scale_axis_equally=False,
                                   rotation_deg=25,
                                   shear_deg=10,
                                   translation_x_px=5,
                                   translation_y_px=5)
    matrix = matrices[0]

    start = time.time()
    for _ in range(1000):
        for image in images:
            augmented_image = tf.warp(image, matrix)
    print("Done in %.8fs" % (time.time() - start, ))
Exemplo n.º 4
0
def main():
    """Measure time required to generate augmentations matrices and to apply
    them.
    """
    batch_size = 64
    nb_runs = 20

    # Measure time required to generate 100k augmentation matrices
    """
    print("Generating 100 times 1000 augmentation matrices of size 64x64...")
    start = time.time()
    for _ in range(100):
        create_aug_matrices(1000, 64, 64,
                            scale_to_percent=1.5, scale_axis_equally=False,
                            rotation_deg=20, shear_deg=20,
                            translation_x_px=5, translation_y_px=5)
    print("Done in %.8f" % (time.time() - start,))
    """

    # Test Performance on 64 images of size 512x512 pixels
    image = data.lena()
    images = np.resize(image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
    augmenter = ImageAugmenter(image.shape[0], image.shape[1],
                               hflip=True, vflip=True,
                               scale_to_percent=1.3, scale_axis_equally=False,
                               rotation_deg=25, shear_deg=10,
                               translation_x_px=5, translation_y_px=5)
    print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
    run_tests(augmenter, images, nb_runs)
    print("")

    print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
    print("(With 1000 pregenerated matrices)")
    augmenter.pregenerate_matrices(1000)
    run_tests(augmenter, images, nb_runs)
    print("")

    # Test Performance on 64 images of size 64x64 pixels
    image = data.lena()
    image = misc.imresize(image, (64, 64))
    images = np.resize(image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
    augmenter = ImageAugmenter(image.shape[0], image.shape[1],
                               hflip=True, vflip=True,
                               scale_to_percent=1.3, scale_axis_equally=False,
                               rotation_deg=25, shear_deg=10,
                               translation_x_px=5, translation_y_px=5)
    print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
    run_tests(augmenter, images, nb_runs)

    print("Running tests on %d images of shape %s" % (batch_size, str(image.shape)))
    print("(With 1000 pregenerated matrices)")
    augmenter.pregenerate_matrices(1000)
    run_tests(augmenter, images, nb_runs)
    print("")

    # Time required to augment 1,000,000 images of size 32x32
    print("Augmenting 1000 batches of 1000 lena images (1 million total)" \
          ", each of size 32x32...")
    image = data.lena()
    image = misc.imresize(image, (32, 32))
    batch_size = 1000
    images = np.resize(image, (batch_size, image.shape[0], image.shape[1], image.shape[2]))
    augmenter = ImageAugmenter(image.shape[1], image.shape[0],
                               hflip=True, vflip=True,
                               scale_to_percent=1.3, scale_axis_equally=False,
                               rotation_deg=25, shear_deg=10,
                               translation_x_px=5, translation_y_px=5)
    augmenter.pregenerate_matrices(1000)

    start = time.time()
    for _ in range(1000):
        augmenter.augment_batch(images)
    print("Done in %.8fs" % (time.time() - start,))
    print("")

    # Time required to augment 1,000,000 images of size 32x32
    # but using only one matrix without the class (no library overhead from
    # ImageAugmenter)
    # Notice that this does not include horizontal and vertical flipping,
    # which is done via numpy in the ImageAugmenter class.
    print("Augmenting 1000 batches of 1000 lena images (1 million total)" \
          ", each of size 32x32, using one matrix directly (no ImageAugmenter " \
          "class)...")
    matrices = create_aug_matrices(1, image.shape[1], image.shape[0],
                                   scale_to_percent=1.3, scale_axis_equally=False,
                                   rotation_deg=25, shear_deg=10,
                                   translation_x_px=5, translation_y_px=5)
    matrix = matrices[0]

    start = time.time()
    for _ in range(1000):
        for image in images:
            augmented_image = tf.warp(image, matrix)
    print("Done in %.8fs" % (time.time() - start,))