Exemplo n.º 1
0
def main() -> None:
    if len(sys.argv) <= 1:
        print(
            'Usage: python main.py [1 or 2 for 2b part 1 and 2 respectively]')
        exit(-1)

    sim_to_run = sys.argv[1]

    factors = [
        Factor(['Trav'], [], [0.05, 0.95]),
        Factor(['Fraud'], ['Trav'], [0.01, 0.99, 0.004, 0.996]),
        Factor(['OC'], [], [0.7, 0.3]),
        Factor(['CRP'], ['OC'], [0.1, 0.9, 0.001, 0.999]),
        Factor(['FP'], ['Trav', 'Fraud'],
               [0.9, 0.1, 0.9, 0.1, 0.1, 0.9, 0.01, 0.99]),
        Factor(['IP'], ['OC', 'Fraud'],
               [0.02, 0.98, 0.01, 0.99, 0.011, 0.989, 0.001, 0.999])
    ]

    if sim_to_run == '1':
        inference(factors, ['Fraud'], ['Trav', 'FP', 'IP', 'OC', 'CRP'], [])
    else:
        inference(factors, ['Fraud'], ['Trav', 'OC'], [('FP', Sign.POSITIVE),
                                                       ('IP', Sign.NEGATIVE),
                                                       ('CRP', Sign.POSITIVE)])
Exemplo n.º 2
0
def main():
    root = tkinter.Tk()
    root.geometry('300x400')
    frame = tkinter.Frame(root, width=256, height=256)
    frame.pack_propagate(0)
    frame.pack(side='top')
    canvas1 = MyCanvas(frame)
    infer = inference()

    def inference_click():
        img = canvas1.image1
        result = infer.predict(img)
        result = int(result)
        canvas1.canvas.delete("all")
        canvas1.image1 = Image.new("RGB", (256, 256), "black")
        canvas1.draw = ImageDraw.Draw(canvas1.image1)
        label2["text"] = str(result)

    botton_Inference = tkinter.Button(root,
                                      text="Inference",
                                      width=7,
                                      height=1,
                                      command=inference_click)
    botton_Inference.pack()
    label1 = tkinter.Label(root, justify="center", text="Inference result is")
    label1.pack()
    label2 = tkinter.Label(root, justify="center")
    label2["font"] = ("Arial, 48")
    label2.pack()
    root.mainloop()
Exemplo n.º 3
0
Arquivo: UI.py Projeto: dcrmg/LeNet
def main():
    root = tkinter.Tk()
    root.geometry('300x400')
    frame = tkinter.Frame(root, width=256, height=256)
    frame.pack_propagate(0)
    frame.pack(side='top')
    canvas1 = MyCanvas(frame)
    infer = inference()

    def inference_click():
        img = canvas1.image1
        result = infer.predict(img)
        result = int(result)
        canvas1.canvas.delete("all")
        canvas1.image1 = Image.new("RGB", (256, 256), "black")
        canvas1.draw = ImageDraw.Draw(canvas1.image1)
        label2["text"] = str(result)

    botton_Inference = tkinter.Button(root,
                                      text="Inference",
                                      width=7,
                                      height=1,
                                      command=inference_click
                                      )
    botton_Inference.pack()
    label1 = tkinter.Label(root, justify="center", text="Inference result is")
    label1.pack()
    label2 = tkinter.Label(root, justify="center")
    label2["font"] = ("Arial, 48")
    label2.pack()
    root.mainloop()
Exemplo n.º 4
0
def inference_click():
    img = canvas1.image1
    result = inference(img)
    result = int(result)
    canvas1.canvas.delete("all")
    canvas1.image1 = Image.new("RGB", (256, 256), "black")
    canvas1.draw = ImageDraw.Draw(canvas1.image1)
    label2["text"] = str(result)
Exemplo n.º 5
0
def main():
    # ................................产生随机数.................................
    ram_x_t_data1 = np.random.rand(50, 10)
    ram_x_t_data2 = np.random.rand(50, 256)
    ram_y_t_data = np.ones([500, 1])

    path = './vgg_output/Data1_fc2_D_no_D1.txt'
    path1 = './vgg_output/Data1_fc1_D_no_D1.txt'
    input = np.loadtxt(path)
    input1 = np.loadtxt(path1)

    Inter = inference()
    result, accuracy = Inter.predict(input, input1, ram_y_t_data)
    print('The result of predicting is \n', result)
    print('accuracy is ', accuracy)
Exemplo n.º 6
0
#!/usr/bin/python3.6
"""
@Author: xiaxianyi<*****@*****.**>
@Time: 2021/4/5 9:11
@File: test.py
Description:
"""
import tensorflow as tf
from Inference import inference
import tensorflow_core.examples.tutorials.mnist.input_data as input_data

if __name__ == '__main__':
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
    infer = inference()
    test_data = mnist.test
    num_examples = test_data._num_examples
    count = 0
    for i in range(num_examples):
        batch = mnist.train.next_batch(1)
        pred = infer.predict(batch[0])
        label = batch[1]
        if pred[0] == label[0]:
            count += 1
    print("test data accuracy: ", count / 10000)
Exemplo n.º 7
0
with open(Name_list, "r") as f:
    lines = f.read().splitlines()

lines_shuffled = np.random.permutation(lines)
Sample_size = 500
lines_sampled = lines_shuffled[0:Sample_size]

iou_vec = np.zeros((21, 3, 3))

for i, theta1 in enumerate(np.linspace(1, 121, 3)):
    for j, theta2 in enumerate(np.linspace(1, 21, 3)):
        int_vec = np.zeros((21, Sample_size))
        union_vec = np.zeros((21, Sample_size))
        theta = np.array([theta1, theta2])
        for ptr, line in enumerate(lines_sampled):
            Q = inference(theta, line, Image_dir, Unary_dir, Prediction_dir,
                          False)
            img_truth_name = os.path.join(Ground_truth_dir, line) + '.png'
            img_truth = imread(img_truth_name)
            truth_data = utils.convert_from_color_segmentation(img_truth)
            for class_idx in range(0, 21):
                int_i, uni_i = eval.int_uni_cls(truth_data, Q, class_idx)
                int_vec[class_idx, ptr] = int_i
                union_vec[class_idx, ptr] = uni_i
        iou_vec[:, i, j] = [
            np.sum(int_vec[i]) / np.sum(union_vec[i]) for i in range(21)
        ]
        scipy.io.savemat(
            os.path.join(output_path, "grid_search_" + str(i * 3 + j)),
            {"grid_search": iou_vec[:, i, j]})
scipy.io.savemat(os.path.join(output_path, "grid_search"),
                 {"grid_search": iou_vec})