Exemplo n.º 1
0
def create_inference_pipeline(model_config: SegmentationModelBase,
                              full_path_to_checkpoints: List[Path],
                              use_gpu: bool = True) \
        -> Tuple[FullImageInferencePipelineBase, SegmentationModelBase]:
    """
    Create pipeline for inference, this can be a single model inference pipeline or an ensemble, if multiple
    checkpoints provided.
    :param model_config: Model config to use to create the pipeline.
    :param full_path_to_checkpoints: Checkpoints to use for model inference.
    :param use_gpu: If GPU should be used or not.
    """
    model_config.use_gpu = use_gpu
    logging.info('test_config: ' + model_config.model_name)

    inference_pipeline: Optional[FullImageInferencePipelineBase]
    if len(full_path_to_checkpoints) == 1:
        inference_pipeline = InferencePipeline.create_from_checkpoint(
            path_to_checkpoint=full_path_to_checkpoints[0],
            model_config=model_config)
    else:
        inference_pipeline = EnsemblePipeline.create_from_checkpoints(
            path_to_checkpoints=full_path_to_checkpoints,
            model_config=model_config)
    if inference_pipeline is None:
        raise ValueError("Cannot create inference pipeline")

    return inference_pipeline, model_config
Exemplo n.º 2
0
def create_pipeline_from_checkpoint_paths(
        config: ModelConfigBase,
        checkpoint_paths: List[Path]) -> Optional[InferencePipelineBase]:
    """
    Attempt to create a pipeline from the provided checkpoint paths. If the files referred to by the paths
    do not exist, or if there are no paths, None will be returned.
    """
    if len(checkpoint_paths) > 1:
        if config.is_segmentation_model:
            assert isinstance(config, SegmentationModelBase)
            return EnsemblePipeline.create_from_checkpoints(
                path_to_checkpoints=checkpoint_paths, model_config=config)
        elif config.is_scalar_model:
            assert isinstance(config, ScalarModelBase)
            return ScalarEnsemblePipeline.create_from_checkpoint(
                paths_to_checkpoint=checkpoint_paths, config=config)
        else:
            raise NotImplementedError(
                "Cannot create inference pipeline for unknown model type")
    if len(checkpoint_paths) == 1:
        if config.is_segmentation_model:
            assert isinstance(config, SegmentationModelBase)
            return InferencePipeline.create_from_checkpoint(
                path_to_checkpoint=checkpoint_paths[0], model_config=config)
        elif config.is_scalar_model:
            assert isinstance(config, ScalarModelBase)
            return ScalarInferencePipeline.create_from_checkpoint(
                path_to_checkpoint=checkpoint_paths[0], config=config)
        else:
            raise NotImplementedError(
                "Cannot create ensemble pipeline for unknown model type")
    return None
def create_inference_pipeline(config: ModelConfigBase,
                              checkpoint_paths: List[Path]) -> Optional[InferencePipelineBase]:
    """
    If multiple checkpoints are found in run_recovery then create EnsemblePipeline otherwise InferencePipeline.
    If no checkpoint files exist in the run recovery or current run checkpoint folder, None will be returned.
    :param config: Model related configs.
    :param epoch: The epoch for which to create pipeline for.
    :param run_recovery: RunRecovery data if applicable
    :return: FullImageInferencePipelineBase or ScalarInferencePipelineBase
    """
    if not checkpoint_paths:
        return None

    if len(checkpoint_paths) > 1:
        if config.is_segmentation_model:
            assert isinstance(config, SegmentationModelBase)
            return EnsemblePipeline.create_from_checkpoints(path_to_checkpoints=checkpoint_paths, model_config=config)
        elif config.is_scalar_model:
            assert isinstance(config, ScalarModelBase)
            return ScalarEnsemblePipeline.create_from_checkpoint(paths_to_checkpoint=checkpoint_paths, config=config)
        else:
            raise NotImplementedError("Cannot create inference pipeline for unknown model type")
    if len(checkpoint_paths) == 1:
        if config.is_segmentation_model:
            assert isinstance(config, SegmentationModelBase)
            return InferencePipeline.create_from_checkpoint(path_to_checkpoint=checkpoint_paths[0],
                                                            model_config=config)
        elif config.is_scalar_model:
            assert isinstance(config, ScalarModelBase)
            return ScalarInferencePipeline.create_from_checkpoint(path_to_checkpoint=checkpoint_paths[0],
                                                                  config=config)
        else:
            raise NotImplementedError("Cannot create ensemble pipeline for unknown model type")
    return None
Exemplo n.º 4
0
def test_aggregate_results() -> None:
    """
    Test to make sure inference results are aggregated as expected
    """
    torch.manual_seed(1)
    num_models = 3
    # set expected posteriors
    model_results = []
    # create results for each model
    for x in range(num_models):
        posteriors = torch.nn.functional.softmax(torch.rand(3, 3, 3, 3),
                                                 dim=0).numpy()
        model_results.append(
            InferencePipeline.Result(
                epoch=0,
                patient_id=0,
                posteriors=posteriors,
                segmentation=posteriors_to_segmentation(posteriors),
                voxel_spacing_mm=(1, 1, 1)))

    # We calculate expected_posteriors before aggregating, as aggregation modifies model_results.
    expected_posteriors = np.mean([x.posteriors for x in model_results],
                                  axis=0)
    ensemble_result = EnsemblePipeline.aggregate_results(
        model_results, aggregation_type=EnsembleAggregationType.Average)

    assert ensemble_result.epoch == model_results[0].epoch
    assert ensemble_result.patient_id == model_results[0].patient_id

    assert np.array_equal(ensemble_result.posteriors, expected_posteriors)
    assert np.array_equal(ensemble_result.segmentation,
                          posteriors_to_segmentation(expected_posteriors))
Exemplo n.º 5
0
def test_store_inference_results(
        test_output_dirs: TestOutputDirectories) -> None:
    np.random.seed(0)
    num_classes = 2
    posterior = torch.nn.functional.softmax(torch.from_numpy(
        np.random.random_sample((num_classes, dim_z, dim_y, dim_x))),
                                            dim=0).numpy()
    segmentation = np.argmax(posterior, axis=0)
    assert segmentation.shape == (dim_z, dim_y, dim_x)

    posterior0 = to_unique_bytes(posterior[0], (0, 1))
    posterior1 = to_unique_bytes(posterior[1], (0, 1))
    spacing = (2.0, 2.0, 2.0)
    header = ImageHeader(origin=(0, 0, 0),
                         direction=(1, 0, 0, 0, 1, 0, 0, 0, 1),
                         spacing=spacing)
    inference_result = InferencePipeline.Result(epoch=1,
                                                patient_id=12,
                                                posteriors=posterior,
                                                segmentation=segmentation,
                                                voxel_spacing_mm=(1, 1, 1))

    test_config = _create_config_with_folders(test_output_dirs)

    assert test_config.class_and_index_with_background() == {
        "background": 0,
        "region": 1
    }

    results_folder = test_output_dirs.root_dir
    store_inference_results(inference_result, test_config,
                            Path(results_folder), header)

    assert_nifti_content(
        os.path.join(results_folder, "012", "posterior_background.nii.gz"),
        segmentation.shape, header, list(posterior0), np.ubyte)

    assert_nifti_content(
        os.path.join(results_folder, "012", "posterior_region.nii.gz"),
        segmentation.shape, header, list(posterior1), np.ubyte)

    assert_nifti_content(
        os.path.join(results_folder, "012", "background.nii.gz"),
        segmentation.shape, header, list([0, 1]), np.ubyte)

    assert_nifti_content(os.path.join(results_folder, "012", "region.nii.gz"),
                         segmentation.shape, header, list([0, 1]), np.ubyte)

    assert_nifti_content(
        os.path.join(results_folder, "012", DEFAULT_RESULT_IMAGE_NAME),
        segmentation.shape, header, list(np.unique(segmentation)), np.ubyte)

    assert_nifti_content(
        os.path.join(results_folder, "012", "uncertainty.nii.gz"),
        inference_result.uncertainty.shape, header, list([248, 249, 253,
                                                          254]), np.ubyte)
Exemplo n.º 6
0
 def create_from_checkpoints(path_to_checkpoints: List[Path],
                             model_config: SegmentationModelBase) -> EnsemblePipeline:
     pipelines = []
     for i, path in enumerate(path_to_checkpoints):
         pipeline = InferencePipeline.create_from_checkpoint(path, model_config, i)
         if pipeline is None:
             logging.warning(f"Cannot create pipeline from path {path}; dropping it from ensemble")
         else:
             pipelines.append(pipeline)
     if not pipelines:
         raise ValueError("Could not create ANY pipelines from checkpoint paths")
     return EnsemblePipeline(model_config=model_config, inference_pipelines=pipelines)
Exemplo n.º 7
0
def run_inference_on_unet(size: TupleInt3) -> None:
    """
    Runs a model forward pass on a freshly created model, with an input image of the given size.
    Asserts that the model prediction has the same size as the input image.
    """
    fg_classes = ["tumour_mass", "subtract"]
    number_of_classes = len(fg_classes) + 1
    config = SegmentationModelBase(
        architecture="UNet3D",
        local_dataset=Path("dummy"),
        feature_channels=[1],
        kernel_size=3,
        largest_connected_component_foreground_classes=fg_classes,
        posterior_smoothing_mm=(2, 2, 2),
        crop_size=(64, 64, 64),
        # test_crop_size must be larger than 'size for the bug to trigger
        test_crop_size=(80, 80, 80),
        image_channels=["mr"],
        ground_truth_ids=fg_classes,
        ground_truth_ids_display_names=fg_classes,
        colours=[(255, 0, 0)] * len(fg_classes),
        fill_holes=[False] * len(fg_classes),
        mask_id=None,
        class_weights=[1.0 / number_of_classes] * number_of_classes,
        train_batch_size=8,
        inference_batch_size=1,
        inference_stride_size=(40, 40, 40),
        use_mixed_precision=True)
    lightning_model = create_lightning_model(config)
    assert isinstance(lightning_model, SegmentationLightning)
    pipeline = InferencePipeline(model=lightning_model, model_config=config)
    image = np.random.uniform(-1, 1, (1, ) + size)
    result = pipeline.predict_and_post_process_whole_image(
        image, mask=np.ones(size), voxel_spacing_mm=(1, 1, 1))
    # All posteriors and segmentations must have the size of the input image
    for p in [*result.posteriors, result.segmentation]:
        assert p.shape == size
        # Check that all results are not NaN. In particular, if stride size is not adjusted
        # correctly, the results would be partially NaN.
        image_util.check_array_range(p)
def test_check_inference_result(segmentation: Any, posteriors: Any, voxel_spacing_mm: Any) -> None:
    """
    Tests to make sure correct checks are made when creating results.
    :return:
    """
    with pytest.raises(Exception):
        InferencePipeline.Result(
            epoch=0,
            patient_id=0,
            segmentation=segmentation,
            posteriors=posteriors,
            voxel_spacing_mm=voxel_spacing_mm
        )
Exemplo n.º 9
0
def inference_identity(
        test_output_dirs: OutputFolderForTests,
        image_size: Any = (4, 5, 8),
        crop_size: Any = (5, 5, 5),
        shrink_by: Any = (0, 0, 0),
        num_classes: int = 5,
        create_mask: bool = True,
        extract_largest_foreground_connected_component: bool = False,
        is_ensemble: bool = False,
        posterior_smoothing_mm: Any = None) -> None:
    """
    Test to make sure inference pipeline is identity preserving, ie: we can recreate deterministic
    model output, ensuring the patching and stitching is robust.
    """
    # fix random seed
    np.random.seed(0)

    ground_truth_ids = list(map(str, range(num_classes)))
    # image to run inference on: The mock model passes the input image through, hence the input
    # image must have as many channels as we have classes (plus background), such that the output is
    # also a valid posterior.
    num_channels = num_classes + 1
    image_channels = np.random.randn(num_channels, *list(image_size))
    # create a random mask if required
    mask = np.round(np.random.uniform(
        size=image_size)).astype(np.int) if create_mask else None
    config = InferenceIdentityModel(shrink_by=shrink_by)
    config.crop_size = crop_size
    config.test_crop_size = crop_size
    config.image_channels = list(map(str, range(num_channels)))
    config.ground_truth_ids = ground_truth_ids
    config.posterior_smoothing_mm = posterior_smoothing_mm

    # We have to set largest_connected_component_foreground_classes after creating the model config,
    # because this parameter is not overridable and hence will not be set by GenericConfig's constructor.
    if extract_largest_foreground_connected_component:
        config.largest_connected_component_foreground_classes = [
            (c, None) for c in ground_truth_ids
        ]
    # set expected posteriors
    expected_posteriors = torch.nn.functional.softmax(
        torch.tensor(image_channels), dim=0).numpy()
    # apply the mask if required
    if mask is not None:
        expected_posteriors = image_util.apply_mask_to_posteriors(
            expected_posteriors, mask)
    if posterior_smoothing_mm is not None:
        expected_posteriors = image_util.gaussian_smooth_posteriors(
            posteriors=expected_posteriors,
            kernel_size_mm=posterior_smoothing_mm,
            voxel_spacing_mm=(1, 1, 1))
    # compute expected segmentation
    expected_segmentation = image_util.posteriors_to_segmentation(
        expected_posteriors)
    if extract_largest_foreground_connected_component:
        largest_component = image_util.extract_largest_foreground_connected_component(
            multi_label_array=expected_segmentation)
        # make sure the test data is accurate by checking if more than one component exists
        assert not np.array_equal(largest_component, expected_segmentation)
        expected_segmentation = largest_component

    # instantiate the model
    checkpoint = test_output_dirs.root_dir / "checkpoint.ckpt"
    create_model_and_store_checkpoint(config, checkpoint_path=checkpoint)

    # create single or ensemble inference pipeline
    inference_pipeline = InferencePipeline.create_from_checkpoint(
        path_to_checkpoint=checkpoint, model_config=config)
    assert inference_pipeline is not None
    full_image_inference_pipeline = EnsemblePipeline([inference_pipeline], config) \
        if is_ensemble else inference_pipeline

    # compute full image inference results
    inference_result = full_image_inference_pipeline \
        .predict_and_post_process_whole_image(image_channels=image_channels, mask=mask, voxel_spacing_mm=(1, 1, 1))

    # Segmentation must have same size as input image
    assert inference_result.segmentation.shape == image_size
    assert inference_result.posteriors.shape == (num_classes +
                                                 1, ) + image_size
    # check that the posteriors and segmentations are as expected. Flatten to a list so that the error
    # messages are more informative.
    assert np.allclose(inference_result.posteriors, expected_posteriors)
    assert np.array_equal(inference_result.segmentation, expected_segmentation)
Exemplo n.º 10
0
def test_evaluate_model_predictions() -> None:
    """
    Creates an 'InferencePipeline.Result' object using pre-defined volumes, stores results and evaluates metrics.
    """
    # Patients 3, 4, and 5 are in test dataset such that:
    # Patient 3 has one missing ground truth channel: "region"
    # Patient 4 has all missing ground truth channels: "region", "region_1"
    # Patient 5 has no missing ground truth channels.
    input_list = [
        ["1", "train_and_test_data/id1_channel1.nii.gz", "channel1"],
        ["1", "train_and_test_data/id1_channel1.nii.gz", "channel2"],
        ["1", "train_and_test_data/id1_mask.nii.gz", "mask"],
        ["1", "train_and_test_data/id1_region.nii.gz", "region"],
        ["1", "train_and_test_data/id1_region.nii.gz", "region_1"],
        ["2", "train_and_test_data/id2_channel1.nii.gz", "channel1"],
        ["2", "train_and_test_data/id2_channel1.nii.gz", "channel2"],
        ["2", "train_and_test_data/id2_mask.nii.gz", "mask"],
        ["2", "train_and_test_data/id2_region.nii.gz", "region"],
        ["2", "train_and_test_data/id2_region.nii.gz", "region_1"],
        ["3", "train_and_test_data/id2_channel1.nii.gz", "channel1"],
        ["3", "train_and_test_data/id2_channel1.nii.gz", "channel2"],
        ["3", "train_and_test_data/id2_mask.nii.gz", "mask"],
        # ["3", "train_and_test_data/id2_region.nii.gz", "region"], # commented on purpose
        ["3", "train_and_test_data/id2_region.nii.gz", "region_1"],
        ["4", "train_and_test_data/id2_channel1.nii.gz", "channel1"],
        ["4", "train_and_test_data/id2_channel1.nii.gz", "channel2"],
        ["4", "train_and_test_data/id2_mask.nii.gz", "mask"],
        # ["4", "train_and_test_data/id2_region.nii.gz", "region"], # commented on purpose
        # ["4", "train_and_test_data/id2_region.nii.gz", "region_1"], # commented on purpose
        ["5", "train_and_test_data/id2_channel1.nii.gz", "channel1"],
        ["5", "train_and_test_data/id2_channel1.nii.gz", "channel2"],
        ["5", "train_and_test_data/id2_mask.nii.gz", "mask"],
        ["5", "train_and_test_data/id2_region.nii.gz", "region"],
        ["5", "train_and_test_data/id2_region.nii.gz", "region_1"]
    ]

    config = create_config_from_dataset(input_list,
                                        train=['1'],
                                        val=['2'],
                                        test=['3', '4', '5'])
    config.allow_incomplete_labels = True
    ds = config.get_torch_dataset_for_inference(ModelExecutionMode.TEST)
    results_folder = config.outputs_folder
    if not results_folder.is_dir():
        results_folder.mkdir()

    model_prediction_evaluations: List[Tuple[PatientMetadata,
                                             MetricsDict]] = []

    for sample_index, sample in enumerate(ds, 1):
        sample = Sample.from_dict(sample=sample)
        posteriors = np.zeros((3, ) + sample.mask.shape, 'float32')
        posteriors[0][:] = 0.2
        posteriors[1][:] = 0.6
        posteriors[2][:] = 0.2

        assert config.dataset_expected_spacing_xyz is not None

        inference_result = InferencePipeline.Result(
            patient_id=sample.patient_id,
            posteriors=posteriors,
            segmentation=np.argmax(posteriors, 0),
            voxel_spacing_mm=config.dataset_expected_spacing_xyz)
        store_inference_results(inference_result=inference_result,
                                config=config,
                                results_folder=results_folder,
                                image_header=sample.metadata.image_header)

        metadata, metrics_per_class = evaluate_model_predictions(
            sample_index - 1,
            config=config,
            dataset=ds,
            results_folder=results_folder)

        model_prediction_evaluations.append((metadata, metrics_per_class))

        # Patient 3 has one missing ground truth channel: "region"
        if sample.metadata.patient_id == '3':
            assert 'Dice' in metrics_per_class.values('region_1').keys()
            assert 'HausdorffDistance_millimeters' in metrics_per_class.values(
                'region_1').keys()
            assert 'MeanSurfaceDistance_millimeters' in metrics_per_class.values(
                'region_1').keys()
            for hue_name in ['region', 'Default']:
                for metric_type in metrics_per_class.values(hue_name).keys():
                    assert np.isnan(
                        metrics_per_class.values(hue_name)[metric_type]).all()

        # Patient 4 has all missing ground truth channels: "region", "region_1"
        if sample.metadata.patient_id == '4':
            for hue_name in ['region_1', 'region', 'Default']:
                for metric_type in metrics_per_class.values(hue_name).keys():
                    assert np.isnan(
                        metrics_per_class.values(hue_name)[metric_type]).all()

        # Patient 5 has no missing ground truth channels
        if sample.metadata.patient_id == '5':
            for metric_type in metrics_per_class.values('Default').keys():
                assert np.isnan(
                    metrics_per_class.values('Default')[metric_type]).all()
            for hue_name in ['region_1', 'region']:
                assert 'Dice' in metrics_per_class.values(hue_name).keys()
                assert 'HausdorffDistance_millimeters' in metrics_per_class.values(
                    hue_name).keys()
                assert 'MeanSurfaceDistance_millimeters' in metrics_per_class.values(
                    hue_name).keys()

    metrics_writer, average_dice = populate_metrics_writer(
        model_prediction_evaluations, config)
    # Patient 3 has only one missing ground truth channel
    assert not np.isnan(average_dice[0])
    assert np.isnan(float(metrics_writer.columns["Dice"][0]))
    assert not np.isnan(float(metrics_writer.columns["Dice"][1]))
    assert np.isnan(float(metrics_writer.columns["HausdorffDistance_mm"][0]))
    assert not np.isnan(
        float(metrics_writer.columns["HausdorffDistance_mm"][1]))
    assert np.isnan(float(metrics_writer.columns["MeanDistance_mm"][0]))
    assert not np.isnan(float(metrics_writer.columns["MeanDistance_mm"][1]))
    # Patient 4 has all missing ground truth channels
    assert np.isnan(average_dice[1])
    assert np.isnan(float(metrics_writer.columns["Dice"][2]))
    assert np.isnan(float(metrics_writer.columns["Dice"][3]))
    assert np.isnan(float(metrics_writer.columns["HausdorffDistance_mm"][2]))
    assert np.isnan(float(metrics_writer.columns["HausdorffDistance_mm"][3]))
    assert np.isnan(float(metrics_writer.columns["MeanDistance_mm"][2]))
    assert np.isnan(float(metrics_writer.columns["MeanDistance_mm"][3]))
    # Patient 5 has no missing ground truth channels.
    assert average_dice[2] > 0
    assert float(metrics_writer.columns["Dice"][4]) >= 0
    assert float(metrics_writer.columns["Dice"][5]) >= 0
    assert float(metrics_writer.columns["HausdorffDistance_mm"][4]) >= 0
    assert float(metrics_writer.columns["HausdorffDistance_mm"][5]) >= 0
    assert float(metrics_writer.columns["MeanDistance_mm"][4]) >= 0
    assert float(metrics_writer.columns["MeanDistance_mm"][5]) >= 0