Exemplo n.º 1
0
def const():
    X, PFCs, Y, C, N = load_data(500,
                                 1000,
                                 eta,
                                 quality,
                                 pad,
                                 x_dim=4,
                                 momentum_scale=momentum_scale,
                                 n=1000000,
                                 max_particle_select=150,
                                 frac=0.1)

    consts[0] = marginal(None, DNN.predict([X, DNN.shuffle(Y)]))
    consts[1] = marginal(None, EFN.predict([PFCs[:, :, :3], EFN.shuffle(Y)]))
    consts[2] = marginal(None, PFN.predict([PFCs[:, :, :3], PFN.shuffle(Y)]))
    consts[3] = marginal(None,
                         PFN_pid.predict([PFCs[:, :, :4],
                                          PFN.shuffle(Y)]))
Exemplo n.º 2
0
def get_values(pt_low, pt_high):

    X_test, PFCs_test, Y_test, C_test, N_test = load_data(
        pt_low,
        pt_high,
        eta,
        quality,
        pad,
        x_dim=4,
        momentum_scale=momentum_scale,
        n=1000000,
        max_particle_select=150,
        frac=0.1)
    test = (X_test, PFCs_test, Y_test, C_test)
    num_events = X_test.shape[0]

    pt = (pt_high + pt_low) / 2

    predictions = np.array(
        (dnn_predict(test, DNN, consts[0]), efn_predict(test, EFN, consts[1]),
         pfn_predict(test, PFN,
                     consts[2]), pfn_pid_predict(test, PFN_pid, consts[3]),
         cms_predict(test, None, consts[4])))
    means, mean_uncertainties = [], []
    resolutions, resolution_uncertainties = [], []
    MIs = []
    for i in range(5):

        mean, mean_uncertainty = [*norm.fit(predictions[i, 0])]
        resolution, resolution_uncertainty = [*norm.fit(predictions[i, 1])]
        means.append(mean / pt)
        mean_uncertainties.append(mean_uncertainty / pt)
        resolutions.append(resolution / pt)
        resolution_uncertainties.append(resolution_uncertainty / pt)

        MIs.append(predictions[i, 3])

    return means, mean_uncertainties, resolutions, resolution_uncertainties, MIs, num_events
Exemplo n.º 3
0
d_multiplier = param_dict["d_multiplier"]

# Dataset Parameters
cache_dir = dataset_dict["cache_dir"]
momentum_scale = dataset_dict["momentum_scale"]
n = dataset_dict["n"]
pad = dataset_dict["pad"]
pt_lower, pt_upper = dataset_dict["pt_lower"], dataset_dict["pt_upper"]
eta = dataset_dict["eta"]
quality = dataset_dict["quality"]

# #############################
# ########## DATASET ##########
# #############################

X, PFCs, Y, C, N = load_data(cache_dir, pt_lower, pt_upper, eta, quality, pad, x_dim = x_dim, momentum_scale = momentum_scale, n = n, max_particle_select = 150, amount = dataset_dict["amount"])
X_test, PFCs_test, Y_test, C_test, N_test = load_data(cache_dir, pt_lower, pt_upper, eta, quality, pad, x_dim = x_dim, momentum_scale = momentum_scale, n = 50)
print(X.shape, PFCs.shape, Y.shape)


# ############################
# ########## MODELS ##########
# ############################

MI_histories = []
retrain_points = []
for train_count in range(retrain + 1):

    print("TRAINING %d" % (train_count))

    # Pretain
Exemplo n.º 4
0
Arquivo: DNN.py Projeto: rikab/ifn
n = dataset_dict["n"]
pad = dataset_dict["pad"]
pt_lower, pt_upper = dataset_dict["pt_lower"], dataset_dict["pt_upper"]
eta = dataset_dict["eta"]
quality = dataset_dict["quality"]

# #############################
# ########## DATASET ##########
# #############################

X, Y, C, N = load_data(cache_dir,
                       pt_lower,
                       pt_upper,
                       eta,
                       quality,
                       pad,
                       momentum_scale=momentum_scale,
                       n=n,
                       max_particle_select=None,
                       amount=dataset_dict["amount"],
                       return_pfcs=False)
X_test, Y_test, C_test, N_test = load_data(cache_dir,
                                           pt_lower,
                                           pt_upper,
                                           eta,
                                           quality,
                                           pad,
                                           momentum_scale=momentum_scale,
                                           n=50,
                                           return_pfcs=False)
Exemplo n.º 5
0
pt_lower, pt_upper = 695, 705
eta = 2.4
quality = 2
epochs = 150
d_multiplier = 0.0

# #############################
# ########## DATASET ##########
# #############################

X_test, PFCs_test, Y_test, C_test, N_test = load_data(
    cache_dir,
    pt_lower,
    pt_upper,
    eta,
    quality,
    pad,
    x_dim=4,
    momentum_scale=momentum_scale,
    n=n,
    max_particle_select=150)
test = (X_test, PFCs_test, Y_test, C_test)

plt.hist(N_test,
         bins=25,
         histtype='step',
         color="red",
         label="# of Particles",
         density=True)
plt.xlabel(r"$N$")
plt.ylabel("Density")