Exemplo n.º 1
0
def loop_over_smearings():
    "Extract scale and resolution for mass and energy."
    ## Set initial value for the mode calculation of the phoERes shape.
    phoERes.setVal(0)
    ## Set initial value for the mode calculation of the mmgMass shape.
    mmgMass.setVal(91.2)
    ## Define then nominal model for the photon energy smearing function.
    phoEResPdf = ParametrizedKeysPdf('phoEResPdf_nominal',
                                     'phoEResPdf_nominal', phoERes, phoScale,
                                     phoRes, data, ROOT.RooKeysPdf.NoMirror,
                                     1.5)
    ## Define the nominal mmg mass model.
    mmgMassPdf = ParametrizedKeysPdf('mmgMassPdf_nominal',
                                     'mmgMassPdf_nominal', mmgMass, massPeak,
                                     massWidth, data, ROOT.RooKeysPdf.NoMirror,
                                     1.5)
    w.Import(phoEResPdf)
    w.Import(mmgMassPdf)
    w.Import(phoEResPdf.shape)
    w.Import(mmgMassPdf.shape)
    for i, (s, r) in enumerate(zip(stargets, rtargets)):
        ## Get the smeared data.
        phoScaleTarget.setVal(s)
        phoResTarget.setVal(r)
        sdata = calibrator.get_smeared_data(s, r)
        ## Save the smeared data in the workspace.
        sdata.SetName('sdata_%d' % i)
        sdata.SetTitle('smeared mmg data %d' % i)
        w.Import(sdata)
        ## Build the energy and mass models for each smearing since the
        ## shapes may have changed.
        ## Guess the right values of the fit parameters.
        phoScale.setVal(s)
        phoRes.setVal(phoEResPdf.shapewidth)
        massScale.setVal(100 * (mmgMassPdf.shapemode / mZ.getVal() - 1))
        massRes.setVal(100 * mmgMassPdf.shapewidth / mmgMassPdf.shapemode)
        ## Fit the models.
        phoFit = phoEResPdf.fitTo(
            sdata,
            roo.Range(-50, 50),
            # roo.Range(s - 5*r, s + 5*r),
            # roo.PrintLevel(-1),
            roo.Save())
        massFit = mmgMassPdf.fitTo(
            sdata,
            roo.Range(60, 120),
            # roo.PrintLevel(-1),
            roo.Save())
        ## Store results in the workspace.
        w.Import(phoFit)
        w.Import(massFit)
        w.saveSnapshot('smear_%d' % i, params, True)
Exemplo n.º 2
0
    def _get_mctruth_scale_and_resolution(self):
        ## Enlarge the range of the observable to get vanishing tails for
        ## the photon energy scale resolution
        # savrange = (self.phoERes.getMin(), self.phoERes.getMax())
        # self.phoERes.setRange(savrange[0] - 10, savrange[1] + 10)

        ## Build the model for the photon energy resolution.
        self.phoEResPdf = ParametrizedKeysPdf('phoEResPdf', 'phoEResPdf',
                                              self.phoERes, self.s, self.r,
                                              self.data,
                                              ROOT.RooKeysPdf.NoMirror,
                                              self.rho)
        # self.phoERes.setRange(*savrange)
        ## Set sensible initial values
        self.s.setVal(self.phoEResPdf.shapemode)
        self.r.setVal(self.phoEResPdf.shapewidth)

        ## Extract the MC truth scale and resolution from MC
        self.fitresult_mctruth = self.phoEResPdf.fitTo(
            self.data, roo.PrintLevel(self.printlevel), roo.SumW2Error(False),
            roo.Range(-50, 50), roo.Save(), roo.Strategy(2))
        self.w.Import(self.fitresult_mctruth)

        ## Store the MC truth scale and resolution
        for source, target in zip([self.s, self.r], [self.s0, self.r0]):
            target.setVal(source.getVal())
            target.setError(source.getError())
            target.setAsymError(source.getErrorLo(), source.getErrorHi())
        # self.s0.setVal(self.s.getVal())
        # self.r0.setVal(self.r.getVal())
        self.w.saveSnapshot('sr_mctruth', self.sr)
        self.w.saveSnapshot('sr0_mctruth', self.sr0)
        self.s0.setConstant(True)
        self.r0.setConstant(True)
Exemplo n.º 3
0
 def _fit_smeared_data(self, name):
     'Fit the current smeared data to get the smeared s and r.'
     self.fitresult_sdata = self.phoEResPdf.fitTo(
         self.sdata, roo.PrintLevel(self.printlevel), roo.SumW2Error(False),
         roo.Range(-50, 50), roo.Save(), roo.Strategy(2))
     self.w.saveSnapshot(name + '_sr', self.sr)
     self.w.Import(self.fitresult_sdata, name + '_fitresult')
Exemplo n.º 4
0
    def run(self):
        ## P e r f o r m   c h i 2   f i t   t o   X + / - d x   a n d   Y + / - d Y   v a l u e s
        ## ---------------------------------------------------------------------------------------

        if self.noxerrors:
            ## Fit chi^2 using Y errors only
            self.fresult = self.f.chi2FitTo(self.dxy_noxerrors,
                                            roo.YVar(self.y), roo.Save(),
                                            roo.Minos())
        else:
            ## Fit chi^2 using X and Y errors
            self.fresult = self.f.chi2FitTo(self.dxy, roo.YVar(self.y), roo.Save(),
                                            roo.Minos())
        
        self.frame = self.make_plot()                
        self.draw_plot(self.frame)
        self.decorate_plot()
        canvases.update()
Exemplo n.º 5
0
def fit_real_data(label):
    '''
    Fit dataset specified by the label: "data" (full 2011A+B),
    "2011A" or "2011B".
    '''
    fit_result = pm.fitTo(data[label], roo.Range('fit'),  roo.NumCPU(8),
                             roo.Timer(), # roo.Verbose()
                             roo.InitialHesse(True), roo.Minos(),
                             roo.Save(), 
        )
    w.Import(fit_result, 'fitresult_' + label)
Exemplo n.º 6
0
    def __init__(self,
                 name,
                 title,
                 mass,
                 phos,
                 phor,
                 data,
                 workspace,
                 phostarget,
                 phortargets,
                 rho=1.5,
                 mirror=ROOT.RooKeysPdf.NoMirror,
                 mrangetrain=(40, 140),
                 mrangenorm=(50, 130),
                 mrangefit=(60, 120)):
        '''PhosphorModel4(str name, str title, RooRealVar mass, RooRealVar phos,
            RooRealVar phor, RooDataSet data, float phostarget,
            [float] phortargets, float rho=1.5,
            int mirror=ROOT.RooKeysPdf.NoMirror)
        name - PDF name
        title - PDF title
        mass - mumugamma invariant mass (GeV), observable
        phos - photon energy scale (%), parameter
        phor - photon energy resolution (%), paramter
        data - (mmMass, mmgMass, phoERes = 100*(phoEreco/phoEgen - 1), dataset
            on which the shapes of reference PDFs are trained.
        phostarget - target reference value of the photon energy scale at which
            the model is being trained
        phortargetss - a list of target photon energy resolution values for the
            moment morphing
        rho - passed to trained RooKeysPdfs
        mirror - passed to trained RooKeysPdfs        
        '''
        ## Attach args.
        self._name = name
        self._title = title
        self._mass = mass
        self._phos = phos
        self._phor = phor
        self._data = data
        self._phostarget = phostarget
        self._phortargets = phortargets[:]
        self._rho = rho
        self._mirror = mirror
        ## Attach other attributes.
        self._massrange = (mass.getMin(), mass.getMax())
        self._sdata_list = []
        self._phostrue_list = []
        self._phortrue_list = []
        self._dm_dphos_list = []
        self._msubs_list = []
        self._keys_pdfs = []
        self._keys_modes = []
        self._keys_effsigmas = []
        self._keys_fitresults = []
        self._pdfs = []
        self._custs = []
        # self._pdfrefs = []
        self._mrefs = []
        self._phormorphs = []
        self._phorhists = []
        self._workspace = workspace
        ## self._workspace = ROOT.RooWorkspace(name + '_workspace',
        ##                                     title + ' workspace')
        w = self._workspace
        self.w = w
        ## Import important args in workspace.
        # w.Import(ROOT.RooArgSet(mass, phos, phor))
        w.Import(mass)
        w.Import(phos)
        w.Import(phor)
        w.Import(self._data)
        w.factory('ConstVar::{name}_phostarget({value})'.format(
            name=name, value=self._phostarget))
        ## Define the morphing parameter. This an identity with the
        ## photon resolution for now.
        mpar = self._mpar = w.factory(
            'expr::{name}_mpar("{phor}", {{{phor}}})'.format(
                ## 'expr::{name}_mpar("2 + sqrt(0.5^2 + 0.05 * {phor}^2)", {{{phor}}})'.format(
                ## 'expr::{name}_mpar("2.325+sqrt(0.4571 + (0.1608*{phor})^2)", {{{phor}}})'.format(
                name=name,
                phor=phor.GetName()))
        ## Define the formula for dlog(m)/dphos.
        self._dm_dphos_func = w.factory('''
            expr::dm_dphos_func("0.5 * (1 - mmMass^2 / mmgMass^2) * mmgMass",
                                   {mmMass, mmgMass})
            ''')
        ## Get the calibrator.
        self._calibrator = MonteCarloCalibrator(self._data)
        ## Loop over target reference photon energy resolutions in phortargets.
        for index, phortarget in enumerate(self._phortargets):
            ## Store the target photon resolution value.
            w.factory('ConstVar::{name}_phortarget_{index}({value})'.format(
                name=name, index=index, value=phortarget))

            ## Get the corresponding smeared RooDataSet sdata named
            ##     {name}_sdata_{index} and attach it to self._sdata
            sdata = self._calibrator.get_smeared_data(
                self._phostarget,
                phortarget,
                name + '_sdata_%d' % index,
                title + ' sdata %d' % index,
                ## Get the true scale and resolution with errors. (This can be
                ##     added to the calibrator and snapshots of
                ##     self._calibrator.s and self._calibrator.r stored as
                ##     {name}_sdata_{index}_sr in self._calibrator.w)
                dofit=True)
            self._sdata_list.append(sdata)
            w.Import(sdata)
            phostrue = ROOT.RooRealVar(self._calibrator.s,
                                       name + '_phostrue_%d' % index)
            phortrue = ROOT.RooRealVar(self._calibrator.r,
                                       name + '_phortrue_%d' % index)
            phostrue.setConstant(True)
            phortrue.setConstant(True)
            self._phostrue_list.append(phostrue)
            self._phortrue_list.append(phortrue)
            w.Import(phostrue)
            w.Import(phortrue)

            ## Calculate the dlogm/dphos {name}_dm_dphos_{index}
            ##     for the smeared dataset.
            sdata.addColumn(self._dm_dphos_func)
            dm_dphos = w.factory('''
                {name}_dm_dphos_{index}[{mean}, 0, 1]
                '''.format(name=name,
                           index=index,
                           mean=sdata.mean(sdata.get()['dm_dphos_func'])))
            dm_dphos.setConstant(True)
            self._dm_dphos_list.append(dm_dphos)

            ## Define the mass scaling {name}_msubs{i} introducing
            ##     the dependence on phos. This needs self._calibrator.s and
            ##     dm_dphos.
            ## msubs = w.factory(
            ##     '''
            ##     LinearVar::{msubs}(
            ##         {mass}, 1,
            ##         expr::{offset}(
            ##             "- 0.01 * {dm_dphos} * ({phos} - {phostrue})",
            ##             {{ {dm_dphos}, {phos}, {phostrue} }}
            ##             )
            ##         )
            ##     '''.format(msubs = name + '_msubs_%d' % index,
            ##                offset = name + '_msubs_offset_%d' % index,
            ##                mass = self._mass.GetName(),
            ##                dm_dphos = dm_dphos.GetName(),
            ##                phos = self._phos.GetName(),
            ##                phostrue = phostrue.GetName())
            ## )
            ## LinearVar cannot be persisted.
            msubs = w.factory('''
                expr::{msubs}(
                     "{mass} - 0.01 * {dm_dphos} * ({phos} - {phostrue})",
                     {{ {mass}, {dm_dphos}, {phos}, {phostrue} }}
                     )
                '''.format(msubs=name + '_msubs_%d' % index,
                           mass=self._mass.GetName(),
                           dm_dphos=dm_dphos.GetName(),
                           phos=self._phos.GetName(),
                           phostrue=phostrue.GetName()))
            self._msubs_list.append(msubs)

            ## Build the corresponding parametrized KEYS PDF {name}_kyes_{index}
            ##     with {name}_keys_mode_{index} and
            ##     {name}_keys_effsigma_{index}.
            keys_mode = w.factory(
                '{name}_keys_mode_{index}[91.2, 60, 120]'.format(name=name,
                                                                 index=index))
            keys_effsigma = w.factory(
                '{name}_keys_effsigma_{index}[3, 0.1, 60]'.format(name=name,
                                                                  index=index))
            mass.setRange(*mrangetrain)
            keys_pdf = ParametrizedKeysPdf(name + '_keys_pdf_%d' % index,
                                           name + '_keys_pdf_%d' % index,
                                           mass,
                                           keys_mode,
                                           keys_effsigma,
                                           sdata,
                                           rho=self._rho)
            self._keys_modes.append(keys_mode)
            self._keys_effsigmas.append(keys_effsigma)
            self._keys_pdfs.append(keys_pdf)

            ## Fit the KEYS PDF to the training data and save the result
            ##     {name}_keys_fitresult_{index} and parameter snapshots
            ##     {name}_keys_mctrue_{index}.
            mass.setRange(*mrangenorm)
            keys_fitresult = keys_pdf.fitTo(sdata, roo.Range(*mrangefit),
                                            roo.Strategy(2), roo.NumCPU(8),
                                            roo.Save(True))
            self._keys_fitresults.append(keys_fitresult)
            w.Import(keys_fitresult, name + '_keys_fitresult_%d' % index)
            w.saveSnapshot(
                name + '_mctrue_%d' % index, ','.join([
                    phostrue.GetName(),
                    phortrue.GetName(),
                    keys_mode.GetName(),
                    keys_effsigma.GetName()
                ]))

            ## Sample the fitted KEYS PDF to a histogram {name}_hist_{index}.
            mass.setRange(*mrangetrain)
            hist = keys_pdf.createHistogram(name + '_hist_%d' % index, mass,
                                            roo.Binning('cache'))

            ## Build a RooDataHist {name}_dhist{index} of the sampled histogram.
            dhist = ROOT.RooDataHist(name + '_dhist_%d' % index,
                                     name + '_dhist_%d' % index,
                                     ROOT.RooArgList(mass), hist)
            w.Import(dhist)

            ## Build a RooHistPdf {name}_pdf_{index} using the dhist and msubs.
            ## pdf = w.factory(
            pdf = w.factory('HistPdf::{name}({{{mass}}}, {dhist}, 1)'.format(
                name=name + '_pdf_%d' % index,
                msubs=msubs.GetName(),
                mass=mass.GetName(),
                dhist=dhist.GetName()))
            self._pdfs.append(pdf)
            mass.setRange(*self._massrange)

            ## Calculate morphing parameter reference values float mref[index].
            phorval = phor.getVal()
            phor.setVal(phortrue.getVal())
            self._mrefs.append(mpar.getVal())
            phor.setVal(phorval)
        ## End of loop over target phortargets

        ## Make the reference and cache binnings in phor
        self._check_phor_ranges()
        partitions = self._partition_binning(self._phor, 'cache', 'reference')

        ## Loop over phor reference bins and define pairwise RooMomentMorphs.
        for ilo in range(len(self._mrefs) - 1):
            ihi = ilo + 1
            mlo = self._mrefs[ilo]
            mhi = self._mrefs[ihi]
            pdflo = self._pdfs[ilo]
            pdfhi = self._pdfs[ihi]
            phormorph = w.factory('''
                MomentMorph::{name}_phormorph_{ilo}to{ihi}(
                    {mpar}, {{{mass}}}, {{{pdfs}}}, {{{mrefs}}}
                    )
                '''.format(name=name,
                           ilo=ilo,
                           ihi=ihi,
                           mpar=mpar.GetName(),
                           mass=mass.GetName(),
                           pdfs='%s, %s' % (pdflo.GetName(), pdfhi.GetName()),
                           mrefs='%f, %f' % (mlo, mhi)))
            self._phormorphs.append(phormorph)
            ## Sample the morph in a 2D histogram in mass and phor.
            phorhist = phormorph.createHistogram(
                name + '_phorhist_%dto%d' % (ilo, ihi), mass,
                roo.Binning('cache'),
                roo.YVar(phor, roo.Binning(partitions[ilo])))
            self._phorhists.append(phorhist)
        ## End of loop over phor reference bins.
        self._stitch_phorhists()
        self._phor_dhist = phor_dhist = ROOT.RooDataHist(
            name + '_phor_dhist', name + '_phor_dhist',
            ROOT.RooArgList(mass, phor), self._phorhist)

        average_index = (len(self._msubs_list) + 1) / 2
        msubs = self._msubs_list[average_index]

        ## self._model = model = ROOT.RooHistPdf(
        ##     name + '_phor_histpdf', name + '_phor_histpdf',
        ##     ROOT.RooArgList(msubs, phor), ROOT.RooArgList(mass, phor), phor_dhist, 2
        ##     )
        ## self._model = model = ROOT.RooPhosphorPdf(
        ##     name + '_phor_histpdf', name + '_phor_histpdf', mass, msubs, phor, phor_dhist, 2
        ##     )

        ## ## Quick hack to make things work.
        ## self._customizer = customizer = ROOT.RooCustomizer(model, 'msub')
        ## customizer.replaceArg(mass, msubs)
        ## model = customizer.build()

        # ROOT.RooHistPdf.__init__(self, model)
        ROOT.RooPhosphorPdf.__init__(self, name, title, mass, msubs, phos,
                                     phor, phor_dhist, 2)
        self.SetName(name)
        self.SetTitle(title)