Exemplo n.º 1
0
    def TransportMatrix(self, k):
        """
        The Transport Matrix F allows to transport the State from site i to j
        """

        return KFMatrix([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.],
                         [0., 0., 0., 1]])
Exemplo n.º 2
0
def UMatrix(udir):
    """ returns the rotation matrix that transfrom vectors in the track ref. system to the global system
    """
    ux, uy, uz = udir
    uu = sqrt(ux * ux + uy * uy + uz * uz)
    ux = ux / uu
    uy = uy / uu
    uz = uz / uu
    #print ' u ',ux,uy,uz
    if (abs(uz) == 0.): raise ZeroDivisonError
    vx = uz
    vy = 0.
    vz = -ux
    vv = sqrt(vx * vx + vy * vy + vz * vz)
    if (abs(vv) == 0.): raise ZeroDivisonError
    vx = vx / vv
    vy = vy / vv
    vz = vz / vv
    #print ' v ',vx,vy,vz
    wx = -uy * ux / vv
    wy = vv
    wz = -uy * uz / vv
    ww = sqrt(wx * wx + wy * wy + wz * wz)
    wx = wx / ww
    wy = wy / ww
    wz = wz / ww
    #print ' w ',wx,wy,wz
    # UMatrix convert track ref system to global system
    U = KFMatrix([[vx, wx, ux], [vy, wy, uy], [vz, wz, uz]])
    debug('UMatrix udir, U ', (udir, U))
    return U
Exemplo n.º 3
0
def InitialState():
    x0 = 5.
    y0 = 10.
    ux0 = 0.25
    uy0 = 0.25
    sx0 = 0.1
    sy0 = 0.1
    x0x0 = sx0**2
    y0y0 = sy0**2

    sux0 = 0.1
    suy0 = 0.1
    ux0ux0 = sux0**2
    uy0uy0 = suy0**2

    x0ux0 = sx0 * sux0
    x0uy0 = sx0 * suy0

    y0ux0 = sy0 * sux0
    y0uy0 = sy0 * suy0

    x0y0 = sx0 * sy0
    ux0uy0 = sux0 * suy0

    traj0 = KFVector([x0, y0, ux0, uy0])

    cov0 = KFMatrix([[x0x0, x0y0, x0ux0, x0uy0], [x0y0, y0y0, y0ux0, y0uy0],
                     [x0ux0, y0ux0, ux0ux0, ux0uy0],
                     [x0uy0, y0uy0, ux0uy0, uy0uy0]])

    return (traj0, cov0)
Exemplo n.º 4
0
 def propagate(self, state, zrun):
     """ propagate this state to a zrun position
     """
     #print ' propagate state ',state
     #print ' propagate at ',zrun
     ok = self.validstep(state, zrun)
     if (not ok):
         warning("kfmodel.propagate not possible ", (zrun, state.vec))
         return ok, None, None, None
     x = KFVector(state.vec)
     C = KFMatrix(state.cov)
     deltaz = self.deltazrun(state, zrun)
     F = self.FMatrix(x, deltaz)
     FT = F.Transpose()
     #print ' F ',F
     #print ' FT ',FT
     Q = self.QMatrix(x, deltaz)
     #print ' Q ',Q
     xp = F * x
     #print ' xp ',xp
     Cp = F * C * FT
     if (Q): Cp = Cp + Q
     #print ' Cp ',Cp
     pstate = KFData(xp, Cp, zrun, state.pars)
     #print ' propagated state ',pstate
     #print " F ",F
     #print " Q ",Q
     debug('kfmodel.propagate state ', pstate)
     return ok, pstate, F, Q
Exemplo n.º 5
0
 def H(self, k):
     """
     H matrix at state k
     """
     dz = self.system.Nodes[k].ZSlice.dz
     z0 = self.system.Nodes[k].ZSlice.Zi + dz / 2.
     return KFMatrix([[1., 0., z0, 0.], [0., 1., 0., z0]])
Exemplo n.º 6
0
    def MultipleScatteringMatrix(self, k):
        """
        The multiple scattering matrix Qk
        """
        dz = self.system.Nodes[k].ZSlice.dz
        z0 = self.system.Nodes[k].ZSlice.Zi
        z02 = z0 * z0
        edep = self.system.Nodes[k].ZSlice.Edep * 1.
        Lr = self.system.Nodes[k].ZSlice.Lr
        L = abs(dz) / Lr

        stateDict = self.system.States[k - 1]
        state = stateDict["F"]

        ak = state.V
        p1 = ak[0]
        p2 = ak[1]
        p3 = ak[2]
        p4 = ak[3]

        lgx.debug(
            "KFWolinFilter:MultipleScatteringMatrix -> ak ={0} type ={1}".
            format(ak, type(ak)))

        lgx.debug(" -> p1 ={0} p2 ={1} p3 ={2} p4 ={3}, type(p1)={4}".format(
            p1, p2, p3, p4, type(p1)))

        lgx.debug(
            "KFWolinFilter:MultipleScatteringMatrix -> dz ={0} dz2 = {1} edep ={2}"
            .format(dz, dz * dz, edep))

        lgx.debug(
            "KFWolinFilter:MultipleScatteringMatrix -> Lr ={0} L = {1} P ={2}".
            format(Lr, L, self.P))

        self.P = self.CorrectP(self.P, edep)

        lgx.debug(
            "KFWolinFilter:MultipleScatteringMatrix -> P (after correct) ={0}".
            format(self.P))

        s2tms = self.Sigma2ThetaMs(self.P, L)

        lgx.debug(
            "KFWolinFilter:MultipleScatteringMatrix -> s2tms ={0} type ={1}".
            format(s2tms, type(s2tms)))

        p3p3 = s2tms * (1 + p3**2) * (1 + p3**2 + p4**2)
        p4p4 = s2tms * (1 + p4**2) * (1 + p3**2 + p4**2)
        p3p4 = s2tms * p3 * p4 * (1 + p3**2 + p4**2)

        cov = KFMatrix([[z02 * p3p3, z02 * p3p4, -z0 * p3p3, -z0 * p3p4],
                        [z02 * p3p4, z02 * p4p4, -z0 * p3p4, -z0 * p4p4],
                        [-z0 * p3p3, -z0 * p3p4, p3p3, p3p4],
                        [-z0 * p3p4, -z0 * p4p4, p3p4, p4p4]])

        return cov
Exemplo n.º 7
0
 def __init__(self, vec, cov, zrun, pars={}):
     """ create KFData with a vector a cov matrix and the zrun parameter
     """
     self.vec = KFVector(vec)
     self.cov = KFMatrix(cov)
     self.zrun = zrun
     self.pars = dict(pars)
     for key in self.pars.keys():
         setattr(self, key, pars[key])
     return
Exemplo n.º 8
0
 def __init__(self, hit, hmatrix):
     """ constructor with a hit (KFData) with the measurment and the HMatrix
     """
     self.hit = hit
     self.hmatrix = KFMatrix(hmatrix)
     self.zrun = hit.zrun
     self.states = {}
     self.chi2 = {}
     self.status = 'none'
     return
Exemplo n.º 9
0
    def __KSystem(self,Hits,hitErrors,radiationLength):
        """
        Returns a KFSystem  
        """    
        Nodes=[]    
        numberOfHits = len(Hits)
   
        Zi =[]
        sxk =hitErrors[0]
        syk =hitErrors[1]
        
        ###########
        ghits = []

        #etot = 0.;  # debug
        for k in range(0,numberOfHits-1):
            hitk =Hits[k]
            
            ##########
            ghits.append( KalmanMeasurement( Array.Vector( hitk[0], hitk[1], hitk[2], hitk[3] ), Array.Matrix( [sxk**2,0.], [0.,syk**2] ) ) )
            
            hitkp1 =Hits[k+1]
            zki =hitk[2]
            zkf = hitkp1[2]
            edepk = hitk[3]
            #etot += edepk #debug
            xk = hitk[0]
            yk =hitk[1]

            zslice=KFZSlice(radiationLength,zki,zkf,edepk)
            hit =KFVector([xk,yk])
            cov=KFMatrix([[sxk**2,0.],
                       [0.,syk**2]])
                
            measurement = KFMeasurement(hit,cov)
            node = KFNode(measurement,zslice)
            Nodes.append(node)
            Zi.append(zki)
            
        #etot += Hits[numberOfHits-1][3] #debug

        if debug >= Debug.draw.value:
            mpldv = MPLDrawVector(Zi)
            mpldv.Draw()
        
        ###########
        for i,hit in enumerate(ghits):
            self.Track.AddNode( KalmanNode(step = i, hit = hit) )
        
        #print "Created KSystem with total deposited energy of {0}".format(etot); # debug

        setup = KFSetup(Nodes) 
        system =KFSystem(setup)
        return system  
Exemplo n.º 10
0
def StraightLineQ(x0, y0, z0, thetax, thetay):
    p1 = x0 - z0 * tan(thetax)
    p2 = y0 - z0 * tan(thetay)
    p3 = tan(thetax)
    p4 = tan(thetay)
    dz = z0
    dz2 = dz * dz
    s2tms = 1.

    p3p3 = s2tms * (1 + p3**2) * (1 + p3**2 + p4**2)
    p4p4 = s2tms * (1 + p4**2) * (1 + p3**2 + p4**2)
    p3p4 = s2tms * p3 * p4 * (1 + p3**2 + p4**2)

    cov = KFMatrix([[dz2 * p3p3, dz2 * p3p4, -dz * p3p3, -dz * p3p4],
                    [dz2 * p3p4, dz2 * p4p4, -dz * p3p4, -dz * p4p4],
                    [-dz * p3p3, -dz * p3p4, p3p3, p3p4],
                    [-dz * p3p4, -dz * p4p4, p3p4, p4p4]])

    return cov
Exemplo n.º 11
0
def Setup():
    LrXe = 15300.  # radiation length of xenon in mm
    Pr = 10.  #pressure in bar

    Nodes = []
    for i in range(1, 6):
        zslice = KFZSlice(LrXe / Pr, i, i + 1, 0.1)

        x0 = 5 + i
        y0 = 15 + i
        hit = KFVector([x0, y0])
        sigma_x = 0.1
        sigma_y = 0.2
        cov = KFMatrix([[sigma_x**2, 0], [0, sigma_y**2]])

        measurement = KFMeasurement(hit, cov)

        node = KFNode(measurement, zslice)
        Nodes.append(node)

    setup = KFSetup(Nodes)
    return setup
Exemplo n.º 12
0
    def SetupFilter(self, k):
        """
        Constructs a state with momentum equal to the current
        momentum of the Kalman filter and using the directional fit
        from slices k to k+4.
        """

        p0 = self.P
        nodes = self.GetNodes()
        nfpts = 4

        # Set up the lists.
        fpt_x = []
        fpt_y = []
        fpt_z = []
        for tk in range(k, k + nfpts):

            if (tk < len(nodes)):
                fV = nodes[tk].Measurement.V
                fx = fV[0]
                fy = fV[1]
                fzi = nodes[tk].ZSlice.Zi
                fzf = nodes[tk].ZSlice.Zf
                fz = (fzi + fzf) / 2.

                fpt_x.append(fx)
                fpt_y.append(fy)
                fpt_z.append(fz)

        # Set the z0 and z0**2 for (zi of the slice) for calculation of MS.
        z0 = nodes[k].ZSlice.Zi
        z02 = z0**2

        # Fit the points to a line to predict the next direction vector.
        # Direction vector of line is vv[0] returned by np.linalg.svd:
        #   code from: http://stackoverflow.com/questions/2298390/fitting-a-line-in-3d
        xvals = np.array(fpt_x)
        yvals = np.array(fpt_y)
        zvals = np.array(fpt_z)
        dmatrix = np.concatenate(
            (xvals[:, np.newaxis], yvals[:, np.newaxis], zvals[:, np.newaxis]),
            axis=1)
        dmean = np.array([fpt_x[0], fpt_y[0], fpt_z[0]
                          ])  # ensure the line passes through the point k
        uu, dd, vv = np.linalg.svd(dmatrix - dmean)
        uvec = vv[0]

        # Calculate the length of the next step.
        Lr = nodes[k].ZSlice.Lr
        dz = nodes[k].ZSlice.dz
        L = abs(dz) / Lr

        # Set the initial trajectory (get initial tangent angles from first two points).
        x0 = fpt_x[0]
        y0 = fpt_y[0]
        ux = uvec[0]
        uy = uvec[1]
        uz = uvec[2]

        tanX0 = ux / uz
        tanY0 = uy / uz
        p1 = x0 - z0 * tanX0
        p2 = y0 - z0 * tanY0
        p3 = tanX0
        p4 = tanY0
        traj0 = KFVector([p1, p2, p3, p4])

        # Compute the initial MS covariance matrix.
        s2tms = self.SigmaThetaMs(p0, L)
        s2tms = s2tms**2
        p3p3 = s2tms * (1 + p3**2) * (1 + p3**2 + p4**2)
        p4p4 = s2tms * (1 + p4**2) * (1 + p3**2 + p4**2)
        p3p4 = s2tms * p3 * p4 * (1 + p3**2 + p4**2)

        cov0 = KFMatrix([[z02 * p3p3, z02 * p3p4, -z0 * p3p3, -z0 * p3p4],
                         [z02 * p3p4, z02 * p4p4, -z0 * p3p4, -z0 * p4p4],
                         [-z0 * p3p3, -z0 * p3p4, p3p3, p3p4],
                         [-z0 * p3p4, -z0 * p4p4, p3p4, p4p4]])

        # Create the state object.
        state0 = KFState(traj0, cov0)

        return state0
Exemplo n.º 13
0
        KFHVector.__init__(self, hit, cov)

    def __str__(self):
        s = "<\nHit :"
        s += self.V.__str__() + "\nCov :" + self.Cov.__str__() + "\n>"
        return s

    def __repr__(self):
        return self.__str__()


if __name__ == '__main__':

    x0 = 5.
    y0 = 15.
    hit = KFVector([x0, y0])
    sigma_x = 0.1
    sigma_y = 0.2
    cov = KFMatrix([[sigma_x**2, 0], [0, sigma_y**2]])

    print "hit is a KFVector", isinstance(hit, KFVector)
    print "hit =", hit

    print "cov is a KFMatrix", isinstance(cov, KFMatrix)
    print "cov =", cov

    m = KFMeasurement(hit, cov)

    print "Measurement=", m