print(f"findBestKWithCrossValidation: {findBestKWithCrossValidation}") print("\n") print('-' * 175) print(f"Iris dataset classification: \n") startTime = time.time() # Entrainement sur l'ensemble de données Iris iris_train, iris_train_labels, iris_test, iris_test_labels = load_datasets.load_iris_dataset( knn_train_ratio) iris_knn = Knn(distance_func=distanceFunc) iris_knn.train(iris_train, iris_train_labels, findBestKWithCrossValidation=findBestKWithCrossValidation) cm, _, _, _ = iris_knn.test(iris_test, iris_test_labels) ConfusionMatrixListKnn.append(cm) print( f"\n --- Elapse time: {1_000*(time.time() - startTime):.2f} ms --- \n") print('-' * 175) print(f"Congressional dataset classification: \n") startTime = time.time() # Entrainement sur l'ensemble de données Congressional cong_train, cong_train_labels, cong_test, cong_test_labels = load_datasets.load_congressional_dataset( knn_train_ratio) cong_knn = Knn(distance_func=distanceFunc) cong_knn.train(cong_train,
print('MONK 2') knn_monks_2.train(monks_train_2, monks_train_labels_2) print('') print('MONK 3') knn_monks_3.train(monks_train_3, monks_train_labels_3) # Testez votre classifieur KNN print('--------------------') print('IRIS DATASET TEST') print('--------------------') k_optimal = knn_iris.get_optimal_k(kmin=1, kmax=6) #print('-------Performance générales sur les données de test---------') knn_iris.set_nbNeighbors(k_optimal) print('Running now on test data with k = ', k_optimal) knn_iris.test(iris_test, iris_test_labels) print('--------------------') print('VOTE DATASET TEST') print('--------------------') k_optimal = knn_vote.get_optimal_k(kmin=1, kmax=6) #print('-------Performance générales sur les données de test---------') knn_vote.set_nbNeighbors(k_optimal) print('Running now on test data with k = ', k_optimal) knn_vote.test(congressional_test, congressional_test_labels) print('--------------------') print('MONKS DATASET TEST') print('--------------------') print('') print('MONK 1')