Exemplo n.º 1
0
    def _ConstructSolver(self, builder_and_solver, scheme,
                         convergence_criterion, strategy_type):

        max_iters = self.settings["mechanical_solver_settings"][
            "max_iteration"].GetInt()
        compute_reactions = self.settings["mechanical_solver_settings"][
            "compute_reactions"].GetBool()
        reform_step_dofs = self.settings["mechanical_solver_settings"][
            "reform_dofs_at_each_step"].GetBool()
        move_mesh_flag = self.settings["mechanical_solver_settings"][
            "move_mesh_flag"].GetBool()

        if strategy_type == "Newton-Raphson":
            self.main_model_part.ProcessInfo.SetValue(KratosPoro.IS_CONVERGED,
                                                      True)
            solver = TrilinosApplication.TrilinosNewtonRaphsonStrategy(
                self.main_model_part, scheme, self.linear_solver,
                convergence_criterion, builder_and_solver, max_iters,
                compute_reactions, reform_step_dofs, move_mesh_flag)
        else:
            raise Exception(
                "Apart from Newton-Raphson, other strategy_type are not available."
            )

        return solver
    def Initialize(self):
        ## Construct the communicator
        self.EpetraCommunicator = KratosTrilinos.CreateCommunicator()

        ## Get the computing model part
        self.computing_model_part = self.GetComputingModelPart()

        ## If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility()

        ## Creating the Trilinos convergence criteria
        self.conv_criteria = KratosTrilinos.TrilinosUPCriteria(self.settings["relative_velocity_tolerance"].GetDouble(),
                                                               self.settings["absolute_velocity_tolerance"].GetDouble(),
                                                               self.settings["relative_pressure_tolerance"].GetDouble(),
                                                               self.settings["absolute_pressure_tolerance"].GetDouble(),
                                                               self.EpetraCommunicator)

        ## Constructing the BDF process (time coefficients update)
        self.bdf_process = KratosMultiphysics.ComputeBDFCoefficientsProcess(self.computing_model_part,self.settings["time_order"].GetInt())

        ## Creating the Trilinos incremental update time scheme (the time integration is defined within the embedded element)
        self.time_scheme = KratosTrilinos.TrilinosResidualBasedIncrementalUpdateStaticSchemeSlip(self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],   # Domain size (2,3)
                                                                                                 self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE]+1) # DOFs (3,4)



        ## Set the guess_row_size (guess about the number of zero entries) for the Trilinos builder and solver
        if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
            guess_row_size = 20*4
        elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
            guess_row_size = 10*3

        ## Construct the Trilinos builder and solver
        if self.settings["consider_periodic_conditions"].GetBool() == True:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolverPeriodic(self.EpetraCommunicator,
                                                                                           guess_row_size,
                                                                                           self.trilinos_linear_solver,
                                                                                           KratosFluid.PATCH_INDEX)
        else:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolver(self.EpetraCommunicator,
                                                                                   guess_row_size,
                                                                                   self.trilinos_linear_solver)

        ## Construct the Trilinos Newton-Raphson strategy
        self.solver = KratosTrilinos.TrilinosNewtonRaphsonStrategy(self.main_model_part,
                                                                   self.time_scheme,
                                                                   self.trilinos_linear_solver,
                                                                   self.conv_criteria,
                                                                   self.builder_and_solver,
                                                                   self.settings["maximum_iterations"].GetInt(),
                                                                   self.settings["compute_reactions"].GetBool(),
                                                                   self.settings["reform_dofs_at_each_step"].GetBool(),
                                                                   self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())
        (self.solver).Initialize()
        (self.solver).Check()

        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.DYNAMIC_TAU, self.settings["dynamic_tau"].GetDouble())
Exemplo n.º 3
0
 def _CreateSolutionStrategy(self):
     computing_model_part = self.GetComputingModelPart()
     time_scheme = self._GetScheme()
     convergence_criterion = self._GetConvergenceCriterion()
     builder_and_solver = self._GetBuilderAndSolver()
     return KratosTrilinos.TrilinosNewtonRaphsonStrategy(
         computing_model_part, time_scheme, convergence_criterion,
         builder_and_solver, self.settings["maximum_iterations"].GetInt(),
         self.settings["compute_reactions"].GetBool(),
         self.settings["reform_dofs_at_each_step"].GetBool(),
         self.settings["move_mesh_flag"].GetBool())
Exemplo n.º 4
0
    def _CreateMechanicalSolver(self, mechanical_scheme,
                                mechanical_convergence_criterion,
                                builder_and_solver, max_iters,
                                compute_reactions, reform_step_dofs,
                                move_mesh_flag, component_wise, line_search,
                                implex):

        self.mechanical_solver = TrilinosApplication.TrilinosNewtonRaphsonStrategy(
            self.main_model_part, mechanical_scheme, self.linear_solver,
            mechanical_convergence_criterion, builder_and_solver, max_iters,
            compute_reactions, reform_step_dofs, move_mesh_flag)
Exemplo n.º 5
0
 def _create_newton_raphson_strategy(self):
     computing_model_part = self.GetComputingModelPart()
     solution_scheme = self.get_solution_scheme()
     linear_solver = self.get_linear_solver()
     convergence_criterion = self.get_convergence_criterion()
     builder_and_solver = self.get_builder_and_solver()
     return TrilinosApplication.TrilinosNewtonRaphsonStrategy(
         computing_model_part, solution_scheme, convergence_criterion,
         builder_and_solver, self.settings["max_iteration"].GetInt(),
         self.settings["compute_reactions"].GetBool(),
         self.settings["reform_dofs_at_each_step"].GetBool(),
         self.settings["move_mesh_flag"].GetBool())
    def Initialize(self):
        ## Construct the communicator
        self.EpetraCommunicator = KratosTrilinos.CreateCommunicator()

        ## Get the computing model part
        self.computing_model_part = self.GetComputingModelPart()

        ## If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility(
            )

        # Set the time discretization utility to compute the BDF coefficients
        time_order = self.settings["time_order"].GetInt()
        if time_order == 2:
            self.time_discretization = KratosMultiphysics.TimeDiscretization.BDF(
                time_order)
        else:
            raise Exception(
                "Only \"time_order\" equal to 2 is supported. Provided \"time_order\": "
                + str(time_order))

        ## Creating the Trilinos convergence criteria
        self.conv_criteria = KratosTrilinos.TrilinosUPCriteria(
            self.settings["relative_velocity_tolerance"].GetDouble(),
            self.settings["absolute_velocity_tolerance"].GetDouble(),
            self.settings["relative_pressure_tolerance"].GetDouble(),
            self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        ## Creating the Trilinos incremental update time scheme (the time integration is defined within the embedded element)
        self.time_scheme = KratosTrilinos.TrilinosResidualBasedIncrementalUpdateStaticSchemeSlip(
            self.main_model_part.ProcessInfo[
                KratosMultiphysics.DOMAIN_SIZE],  # Domain size (2,3)
            self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] +
            1)  # DOFs (3,4)

        ## Set the guess_row_size (guess about the number of zero entries) for the Trilinos builder and solver
        if self.main_model_part.ProcessInfo[
                KratosMultiphysics.DOMAIN_SIZE] == 3:
            guess_row_size = 20 * 4
        elif self.main_model_part.ProcessInfo[
                KratosMultiphysics.DOMAIN_SIZE] == 2:
            guess_row_size = 10 * 3

        ## Construct the Trilinos builder and solver
        if self.settings["consider_periodic_conditions"].GetBool() == True:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolverPeriodic(
                self.EpetraCommunicator, guess_row_size,
                self.trilinos_linear_solver, KratosFluid.PATCH_INDEX)
        else:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolver(
                self.EpetraCommunicator, guess_row_size,
                self.trilinos_linear_solver)

        ## Construct the Trilinos Newton-Raphson strategy
        self.solver = KratosTrilinos.TrilinosNewtonRaphsonStrategy(
            self.main_model_part, self.time_scheme,
            self.trilinos_linear_solver, self.conv_criteria,
            self.builder_and_solver,
            self.settings["maximum_iterations"].GetInt(),
            self.settings["compute_reactions"].GetBool(),
            self.settings["reform_dofs_at_each_step"].GetBool(),
            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())
        (self.solver).Initialize()

        # For the primitive Ausas formulation, set the find nodal neighbours process
        # Recall that the Ausas condition requires the nodal neighbouts.
        if (self.settings["formulation"]["element_type"].GetString() ==
                "embedded_ausas_navier_stokes"):
            number_of_avg_elems = 10
            number_of_avg_nodes = 10
            self.find_nodal_neighbours_process = KratosMultiphysics.FindNodalNeighboursProcess(
                self.GetComputingModelPart(), number_of_avg_elems,
                number_of_avg_nodes)

        KratosMultiphysics.Logger.PrintInfo(
            "NavierStokesMPIEmbeddedMonolithicSolver",
            "Solver initialization finished.")
Exemplo n.º 7
0
    def Initialize(self):
        ## Construct the communicator
        self.EpetraCommunicator = KratosTrilinos.CreateCommunicator()

        ## Get the computing model part
        self.computing_model_part = self.GetComputingModelPart()

        ## If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility()

        ## Creating the Trilinos convergence criteria
        self.conv_criteria = KratosTrilinos.TrilinosUPCriteria(self.settings["relative_velocity_tolerance"].GetDouble(),
                                                               self.settings["absolute_velocity_tolerance"].GetDouble(),
                                                               self.settings["relative_pressure_tolerance"].GetDouble(),
                                                               self.settings["absolute_pressure_tolerance"].GetDouble())

        ## Creating the Trilinos time scheme
        if (self.settings["turbulence_model"].GetString() == "None"):
            if self.settings["consider_periodic_conditions"].GetBool() == True:
                self.time_scheme = KratosTrilinos.TrilinosPredictorCorrectorVelocityBossakSchemeTurbulent(self.settings["alpha"].GetDouble(),
                                                                                                          self.settings["move_mesh_strategy"].GetInt(),
                                                                                                          self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],
                                                                                                          KratosCFD.PATCH_INDEX)
            else:
                self.time_scheme = KratosTrilinos.TrilinosPredictorCorrectorVelocityBossakSchemeTurbulent(self.settings["alpha"].GetDouble(),
                                                                                                          self.settings["move_mesh_strategy"].GetInt(),
                                                                                                          self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])


        ## Set the guess_row_size (guess about the number of zero entries) for the Trilinos builder and solver
        if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
            guess_row_size = 20*4
        elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
            guess_row_size = 10*3

        ## Construct the Trilinos builder and solver
        if self.settings["consider_periodic_conditions"].GetBool() == True:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolverPeriodic(self.EpetraCommunicator,
                                                                                           guess_row_size,
                                                                                           self.trilinos_linear_solver,
                                                                                           KratosCFD.PATCH_INDEX)
        else:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolver(self.EpetraCommunicator,
                                                                                   guess_row_size,
                                                                                   self.trilinos_linear_solver)

        ## Construct the Trilinos Newton-Raphson strategy
        self.solver = KratosTrilinos.TrilinosNewtonRaphsonStrategy(self.main_model_part,
                                                                   self.time_scheme,
                                                                   self.trilinos_linear_solver,
                                                                   self.conv_criteria,
                                                                   self.builder_and_solver,
                                                                   self.settings["maximum_iterations"].GetInt(),
                                                                   self.settings["compute_reactions"].GetBool(),
                                                                   self.settings["reform_dofs_at_each_step"].GetBool(),
                                                                   self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        (self.solver).Initialize()
        (self.solver).Check()

        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.DYNAMIC_TAU, self.settings["dynamic_tau"].GetDouble())
        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.OSS_SWITCH, self.settings["oss_switch"].GetInt())

        print ("Monolithic MPI solver initialization finished.")
    def Initialize(self):

        # Construct the communicator
        self.EpetraCommunicator = TrilinosApplication.CreateCommunicator()

        # Set ProcessInfo variables
        self.main_model_part.ProcessInfo.SetValue(
            KratosMultiphysics.REFERENCE_TEMPERATURE,
            self.settings["reference_temperature"].GetDouble())
        self.main_model_part.ProcessInfo.SetValue(
            KratosMultiphysics.TIME_INTEGRATION_THETA,
            self.settings["thermal_solver_settings"]
            ["theta_scheme"].GetDouble())

        # Get the computing model parts
        self.thermal_computing_model_part = self.main_model_part.GetSubModelPart(
            self.thermal_model_part_name)
        self.mechanical_computing_model_part = self.GetComputingModelPart()

        # Builder and solver creation
        thermal_builder_and_solver = self._ConstructBuilderAndSolver(
            self.settings["thermal_solver_settings"]
            ["block_builder"].GetBool(), self.thermal_linear_solver)
        mechanical_builder_and_solver = self._ConstructBuilderAndSolver(
            self.settings["mechanical_solver_settings"]
            ["block_builder"].GetBool(), self.mechanical_linear_solver)

        # Solution scheme creation
        thermal_scheme = TrilinosApplication.TrilinosResidualBasedIncrementalUpdateStaticScheme(
        )
        mechanical_scheme = self._ConstructScheme(
            self.settings["mechanical_solver_settings"]
            ["scheme_type"].GetString(),
            self.settings["mechanical_solver_settings"]
            ["solution_type"].GetString())

        # Get the convergence criterion
        convergence_criterion = self._ConstructConvergenceCriterion(
            self.settings["mechanical_solver_settings"]
            ["convergence_criterion"].GetString())

        # Solver creation (Note: this could be TrilinosResidualBasedLinearStrategy, but there is no such strategy)
        self.Thermal_Solver = TrilinosApplication.TrilinosNewtonRaphsonStrategy(
            self.thermal_computing_model_part, thermal_scheme,
            convergence_criterion, thermal_builder_and_solver,
            self.settings["mechanical_solver_settings"]
            ["max_iteration"].GetInt(),
            self.settings["thermal_solver_settings"]
            ["compute_reactions"].GetBool(),
            self.settings["thermal_solver_settings"]
            ["reform_dofs_at_each_step"].GetBool(),
            self.settings["thermal_solver_settings"]
            ["move_mesh_flag"].GetBool())
        self.Mechanical_Solver = self._ConstructSolver(
            mechanical_builder_and_solver, mechanical_scheme,
            convergence_criterion, self.settings["mechanical_solver_settings"]
            ["strategy_type"].GetString())

        # Set echo_level
        self.Thermal_Solver.SetEchoLevel(
            self.settings["thermal_solver_settings"]["echo_level"].GetInt())
        self.Mechanical_Solver.SetEchoLevel(
            self.settings["mechanical_solver_settings"]["echo_level"].GetInt())

        # Check if everything is assigned correctly
        self.Thermal_Solver.Check()
        self.Mechanical_Solver.Check()

        print("Initialization MPI DamThermoMechanicSolver finished")
    def Initialize(self):

        ## Construct the communicator
        self.EpetraCommunicator = KratosTrilinos.CreateCommunicator()

        ## Get the computing model part
        self.computing_model_part = self.GetComputingModelPart()

        KratosMultiphysics.NormalCalculationUtils().CalculateOnSimplex(self.computing_model_part, self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])

        self.neighbour_search = KratosMultiphysics.FindNodalNeighboursProcess(self.computing_model_part)
        (self.neighbour_search).Execute()

        self.accelerationLimitationUtility = KratosMultiphysics.FluidDynamicsApplication.AccelerationLimitationUtilities(self.computing_model_part, 5.0)

        ## If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility()

        # Set the time discretization utility to compute the BDF coefficients
        time_order = self.settings["time_order"].GetInt()
        if time_order == 2:
            self.time_discretization = KratosMultiphysics.TimeDiscretization.BDF(time_order)
        else:
            raise Exception("Only \"time_order\" equal to 2 is supported. Provided \"time_order\": " + str(time_order))

        ## Creating the Trilinos convergence criteria
        self.conv_criteria = KratosTrilinos.TrilinosUPCriteria(self.settings["relative_velocity_tolerance"].GetDouble(),
                                                               self.settings["absolute_velocity_tolerance"].GetDouble(),
                                                               self.settings["relative_pressure_tolerance"].GetDouble(),
                                                               self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        #### ADDING NEW PROCESSES : level-set-convection and variational-distance-process
        self.level_set_convection_process = self._set_level_set_convection_process()
        self.variational_distance_process = self._set_variational_distance_process()

        ## Creating the Trilinos incremental update time scheme (the time integration is defined within the TwoFluidNavierStokes element)
        self.time_scheme = KratosTrilinos.TrilinosResidualBasedIncrementalUpdateStaticSchemeSlip(self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],   # Domain size (2,3)
                                                                                                 self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE]+1) # DOFs (3,4)


        ## Set the guess_row_size (guess about the number of zero entries) for the Trilinos builder and solver
        if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
            guess_row_size = 20*4
        elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
            guess_row_size = 10*3

        ## Construct the Trilinos builder and solver
        if self.settings["consider_periodic_conditions"].GetBool() == True:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolverPeriodic(self.EpetraCommunicator,
                                                                                           guess_row_size,
                                                                                           self.trilinos_linear_solver,
                                                                                           KratosFluid.PATCH_INDEX)
        else:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolver(self.EpetraCommunicator,
                                                                                   guess_row_size,
                                                                                   self.trilinos_linear_solver)

        ## Construct the Trilinos Newton-Raphson strategy
        self.solver = KratosTrilinos.TrilinosNewtonRaphsonStrategy(self.main_model_part,
                                                                   self.time_scheme,
                                                                   self.trilinos_linear_solver,
                                                                   self.conv_criteria,
                                                                   self.builder_and_solver,
                                                                   self.settings["maximum_iterations"].GetInt(),
                                                                   self.settings["compute_reactions"].GetBool(),
                                                                   self.settings["reform_dofs_at_each_step"].GetBool(),
                                                                   self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())
        (self.solver).Initialize()
        (self.solver).Check()

        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.DYNAMIC_TAU, self.settings["formulation"]["dynamic_tau"].GetDouble())
Exemplo n.º 10
0
    def Initialize(self):
        ## Construct the communicator
        self.EpetraCommunicator = KratosTrilinos.CreateCommunicator()

        ## Get the computing model part
        self.computing_model_part = self.GetComputingModelPart()

        ## If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility(
            )

        ## Creating the Trilinos convergence criteria
        self.conv_criteria = KratosTrilinos.TrilinosUPCriteria(
            self.settings["relative_velocity_tolerance"].GetDouble(),
            self.settings["absolute_velocity_tolerance"].GetDouble(),
            self.settings["relative_pressure_tolerance"].GetDouble(),
            self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        ## Creating the Trilinos time scheme
        if (self.element_integrates_in_time):
            # "Fake" scheme for those cases in where the element manages the time integration
            # It is required to perform the nodal update once the current time step is solved
            self.time_scheme = KratosTrilinos.TrilinosResidualBasedIncrementalUpdateStaticSchemeSlip(
                self.computing_model_part.ProcessInfo[
                    KratosMultiphysics.DOMAIN_SIZE],
                self.computing_model_part.ProcessInfo[
                    KratosMultiphysics.DOMAIN_SIZE] + 1)
            # In case the BDF2 scheme is used inside the element, set the time discretization utility to compute the BDF coefficients
            if (self.settings["time_scheme"].GetString() == "bdf2"):
                time_order = self.settings["time_order"].GetInt()
                if time_order == 2:
                    self.time_discretization = KratosMultiphysics.TimeDiscretization.BDF(
                        time_order)
                else:
                    raise Exception(
                        "Only \"time_order\" equal to 2 is supported. Provided \"time_order\": "
                        + str(time_order))
            else:
                err_msg = "Requested elemental time scheme " + self.settings[
                    "time_scheme"].GetString() + " is not available.\n"
                err_msg += "Available options are: \"bdf2\""
                raise Exception(err_msg)
        else:
            if (self.settings["turbulence_model"].GetString() == "None"):
                if self.settings["consider_periodic_conditions"].GetBool(
                ) == True:
                    self.time_scheme = KratosTrilinos.TrilinosPredictorCorrectorVelocityBossakSchemeTurbulent(
                        self.settings["alpha"].GetDouble(),
                        self.computing_model_part.ProcessInfo[
                            KratosMultiphysics.DOMAIN_SIZE],
                        KratosCFD.PATCH_INDEX)
                else:
                    self.time_scheme = KratosTrilinos.TrilinosPredictorCorrectorVelocityBossakSchemeTurbulent(
                        self.settings["alpha"].GetDouble(),
                        self.settings["move_mesh_strategy"].GetInt(),
                        self.computing_model_part.ProcessInfo[
                            KratosMultiphysics.DOMAIN_SIZE])

        ## Set the guess_row_size (guess about the number of zero entries) for the Trilinos builder and solver
        if self.main_model_part.ProcessInfo[
                KratosMultiphysics.DOMAIN_SIZE] == 3:
            guess_row_size = 20 * 4
        elif self.main_model_part.ProcessInfo[
                KratosMultiphysics.DOMAIN_SIZE] == 2:
            guess_row_size = 10 * 3

        ## Construct the Trilinos builder and solver
        if self.settings["consider_periodic_conditions"].GetBool() == True:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolverPeriodic(
                self.EpetraCommunicator, guess_row_size,
                self.trilinos_linear_solver, KratosCFD.PATCH_INDEX)
        else:
            self.builder_and_solver = KratosTrilinos.TrilinosBlockBuilderAndSolver(
                self.EpetraCommunicator, guess_row_size,
                self.trilinos_linear_solver)

        ## Construct the Trilinos Newton-Raphson strategy
        self.solver = KratosTrilinos.TrilinosNewtonRaphsonStrategy(
            self.main_model_part, self.time_scheme,
            self.trilinos_linear_solver, self.conv_criteria,
            self.builder_and_solver,
            self.settings["maximum_iterations"].GetInt(),
            self.settings["compute_reactions"].GetBool(),
            self.settings["reform_dofs_at_each_step"].GetBool(),
            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        self.formulation.SetProcessInfo(self.computing_model_part)

        (self.solver).Initialize()

        KratosMultiphysics.Logger.Print(
            "Monolithic MPI solver initialization finished.")