AA.analyzeBass(ys, xs)

    if mode[0] in platform.freqIntervalModes:
        fIntervals = AA.analyzeFrequencyIntervals(ys, xs)

    AA.analyzeNonBass(ys, xs)
    AA.analyzeIntensity(ys, xs)

    platform.updateLEDs(fIntervals)
    SR.newAudio = False


if __name__ == "__main__":

    # Setup Led graphical window or actual Led platform matrix
    platform = LEDWindow()
    # platform = LEDPlatform(7,14)
    AA = AudioAnalyzer(platform)

    # parses mode input to set mode
    parser = ModeParser(sys.argv, platform.modes)
    mode = parser.modes.items()[0]
    platform.updateMode(mode)
    # Start up display
    platform.updateMode(("textdisplay", "text='3 2 1'"))
    password = ""
    with open("ServerPassword.txt") as f:
        for line in f:
            line = line.strip()
            password += line
Exemplo n.º 2
0
    win_plot = ui_plot.QtGui.QMainWindow()
    uiplot = ui_plot.Ui_win_plot()
    uiplot.setupUi(win_plot)
    uiplot.btnA.clicked.connect(plotSomething)
    #uiplot.btnB.clicked.connect(lambda: uiplot.timer.setInterval(100.0))
    #uiplot.btnC.clicked.connect(lambda: uiplot.timer.setInterval(10.0))
    #uiplot.btnD.clicked.connect(lambda: uiplot.timer.setInterval(1.0))
    c=Qwt.QwtPlotCurve()  
    c.attach(uiplot.qwtPlot)
    
    uiplot.qwtPlot.setAxisScale(uiplot.qwtPlot.yLeft, 0,20000)
    
    uiplot.timer = QtCore.QTimer()
    uiplot.timer.start(1.0)
    
    win_plot.connect(uiplot.timer, QtCore.SIGNAL('timeout()'), plotSomething) 
    
    platform = LEDWindow()  
    parser = ModeParser(sys.argv, platform.modes)
    platform.updateMode(parser.modes.items()[0])

    SR=SwhRecorder()
    SR.setup()
    SR.continuousStart()

    ### DISPLAY WINDOWS
    win_plot.show()
    code=app.exec_()
    SR.close()
    sys.exit(code)
Exemplo n.º 3
0
def main():
    #Creates the 8x8 LED window
    window = LEDWindow()
    
    matrix = [0,0,0,0,0,0,0,0]
    dataPoints = len(matrix)
    power = []
    weighting = [2,2,8,8,16,32,64,64]
    avgLen = 10
    peaksIndex = 0
    peaks = np.zeros(shape=(dataPoints,avgLen)) - 1
    averages = np.zeros(shape=(dataPoints,2))
        
    
    # Set up audio
    wavfile = wave.open('/home/john/LedDancePlatform/pony.wav', 'r')
    #wavfile = wave.open('/home/pi/LedDancePlatform/pony.wav','r')
    sample_rate = wavfile.getframerate()
    print sample_rate
    no_channels = wavfile.getnchannels()
    chunk       = 2048 # Use a multiple of 8
    output = aa.PCM(aa.PCM_PLAYBACK, aa.PCM_NORMAL)
    output.setchannels(no_channels)
    output.setrate(sample_rate)
    output.setformat(aa.PCM_FORMAT_S16_LE)
    output.setperiodsize(chunk)

    #graphs audio spectrum
    #comment this out along with update code in calculate_levels
    spectrum = SpectralPlot(chunk, sample_rate)
    

    # Return power array index corresponding to a particular frequency
    def piff(val):
       return int(2*chunk*val/sample_rate)

    def rolling_window(a, window):
        shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
        strides = a.strides + (a.strides[-1],)
        return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)


    """   
    def avgPeak(peaks, newpeak, index, avgLen):
        peaks[index] = newpeak
        index = (index+1) % avgLen
        return peaks
    """
    def calculate_levels(data, chunk,sample_rate,peaks,
                        peaksIndex, dataPoints, avgLen, averages,
                        spectrum):
       #global matrix
       # Convert raw data (ASCII string) to numpy array
       data = data.astype(np.int)
       #data = unpack("%dh"%(len(data)/2),data)
       energy = numpy.dot(data,data)/float(0xffffffff)

       energy_avg = averages
       
       
       data = np.array(data, dtype='h') * np.hanning(chunk*2)
       #data = np.hamming(2*chunk)
       # Apply FFT - real data
       fourier=np.fft.rfft(data)
       # Remove last element in array to make it the same size as chunk
       fourier=np.delete(fourier,len(fourier)-1)
       # Find average 'amplitude' for specific frequency ranges in Hz
       #power = 10*np.log10(np.abs(fourier)+1e-20)
       power = np.abs(fourier)+1e-20
       power = power/100000
       power = power[:len(power)/2]
       #updates spectral graph
       spectrum.update(power)
        
       fRange = (chunk/(dataPoints))
       
       for i in xrange(dataPoints):
          maxval = np.amax(power[(i*fRange/2):
                                 (fRange*(i+1)/2)],-1)
          peaks[i][peaksIndex] = maxval
          if(i == 0):
            print maxval
          if(maxval > averages[i][0] + 5):
            averages[i][1] = 1
          else:
            averages[i][1] = 0
       avgList = np.mean(np.mean(rolling_window(peaks,avgLen),
                               -1),-1)
       for j in xrange(dataPoints):
           averages[j][0] = avgList[j]
       #matrix = avgList/10
       
     
       
       #for i in xrange(dataPoints):
    

       

       """  
       matrix[0]= int(np.mean(power[piff(0)    :piff(156):1]))
       matrix[1]= int(np.mean(power[piff(156)  :piff(313):1]))
       matrix[2]= int(np.mean(power[piff(313)  :piff(625):1]))
       matrix[3]= int(np.mean(power[piff(625)  :piff(1250):1]))
       matrix[4]= int(np.mean(power[piff(1250) :piff(2500):1]))
       matrix[5]= int(np.mean(power[piff(2500) :piff(5000):1]))
       matrix[6]= int(np.mean(power[piff(5000) :piff(10000):1]))
       matrix[7]= int(np.mean(power[piff(10000):piff(20000):1]))
       # Tidy up column values for the LED matrix
       matrix=np.divide(np.multiply(matrix,weighting),1000000)
       """
       # Set floor at 0 and ceiling at 8 for LED matrix
       #matrix=np.clip(matrix,0,8)
      #return matrix.astype(int)
       return averages


    # Process audio file   
    print "Processing....."
    data = wavfile.readframes(chunk)
    print data
    while data!='':
        output.write(data)   
        averages=calculate_levels(data, chunk,sample_rate, peaks, peaksIndex,dataPoints, avgLen, averages, spectrum)
        peaksIndex = (peaksIndex+1)%avgLen
        #window.turnOffLEDs()
        window.updateLEDs(averages, "thetachi")   
        data = wavfile.readframes(chunk)