Exemplo n.º 1
0
class MLP:
    def __init__(self, input, label, n_in, n_hidden, n_out, rng=None):

        self.x = input
        self.y = label

        if rng is None:
            rng = numpy.random.RandomState(1234)

        # construct hidden_layer
        self.hidden_layer = HiddenLayer(input=self.x,
                                        n_in=n_in,
                                        n_out=n_hidden,
                                        rng=rng,
                                        activation=tanh)

        # construct log_layer
        self.log_layer = LogisticRegression(input=self.hidden_layer.output,
                                            label=self.y,
                                            n_in=n_hidden,
                                            n_out=n_out)

    def train(self):
        # forward hidden_layer
        layer_input = self.hidden_layer.forward()

        self.log_layer.train(input=layer_input)

        # backward hidden_layer
        self.hidden_layer.backward(prev_layer=self.log_layer)

    def predict(self, x):
        x = self.hidden_layer.output(input=x)
        return self.log_layer.predict(x)
Exemplo n.º 2
0
    def __init__(self,
                 input=None,
                 label=None,
                 n_ins=2,
                 hidden_layer_sizes=[3, 3],
                 n_outs=2,
                 rng=None):

        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.dA_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        assert self.n_layers > 0

        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()

            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            # construct dA_layers
            dA_layer = dA(input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layer_sizes[i],
                          W=sigmoid_layer.W,
                          hbias=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)

        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].sample_h_given_v(),
            label=self.y,
            n_in=hidden_layer_sizes[-1],
            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()
Exemplo n.º 3
0
    def __init__(self,
                 N,
                 label,
                 n_hidden,
                 n_out,
                 image_size,
                 channel,
                 n_kernels,
                 kernel_sizes,
                 pool_sizes,
                 rng=None,
                 activation=ReLU):

        if rng is None:
            rng = numpy.random.RandomState(1234)

        self.N = N
        self.n_hidden = n_hidden

        self.n_kernels = n_kernels

        self.pool_sizes = pool_sizes

        self.conv_layers = []
        self.conv_sizes = []

        # construct 1st conv_layer
        conv_layer0 = ConvPoolLayer(N, image_size, channel, n_kernels[0],
                                    kernel_sizes[0], pool_sizes[0], rng,
                                    activation)
        self.conv_layers.append(conv_layer0)

        conv_size = [
            (image_size[0] - kernel_sizes[0][0] + 1) / pool_sizes[0][0],
            (image_size[1] - kernel_sizes[0][1] + 1) / pool_sizes[0][1]
        ]
        self.conv_sizes.append(conv_size)

        # construct 2nd conv_layer
        conv_layer1 = ConvPoolLayer(N, conv_size, n_kernels[0], n_kernels[1],
                                    kernel_sizes[1], pool_sizes[1], rng,
                                    activation)
        self.conv_layers.append(conv_layer1)

        conv_size = [
            (conv_size[0] - kernel_sizes[1][0] + 1) / pool_sizes[1][0],
            (conv_size[1] - kernel_sizes[1][0] + 1) / pool_sizes[1][1]
        ]
        self.conv_sizes.append(conv_size)

        # construct hidden_layer
        self.hidden_layer = HiddenLayer(
            None, n_kernels[-1] * conv_size[0] * conv_size[1], n_hidden, None,
            None, rng, activation)

        # construct log_layer
        self.log_layer = LogisticRegression(None, label, n_hidden, n_out)
Exemplo n.º 4
0
    def __init__(self, rng, input, n_in, n_hidden, n_out):
        """Initialize the parameters for the multilayer perceptron

        :type rng: numpy.random.RandomState
        :param rng: a random number generator used to initialize weights

        :type input: theano.tensor.TensorType
        :param input: symbolic variable that describes the input of the
        architecture (one minibatch)

        :type n_in: int
        :param n_in: number of input units, the dimension of the space in
        which the datapoints lie

        :type n_hidden: int
        :param n_hidden: number of hidden units

        :type n_out: int
        :param n_out: number of output units, the dimension of the space in
        which the labels lie

        """

        # Since we are dealing with a one hidden layer MLP, this will
        # translate into a TanhLayer connected to the LogisticRegression
        # layer; this can be replaced by a SigmoidalLayer, or a layer
        # implementing any other nonlinearity
        self.hiddenLayer = HiddenLayer(rng=rng,
                                       input=input,
                                       n_in=n_in,
                                       n_out=n_hidden,
                                       activation=T.tanh)

        # The logistic regression layer gets as input the hidden units
        # of the hidden layer
        self.logRegressionLayer = LogisticRegression(
            input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out)

        # L1 norm ; one regularization option is to enforce L1 norm to
        # be small
        self.L1 = abs(self.hiddenLayer.W).sum() \
                + abs(self.logRegressionLayer.W).sum()

        # square of L2 norm ; one regularization option is to enforce
        # square of L2 norm to be small
        self.L2_sqr = (self.hiddenLayer.W ** 2).sum() \
                    + (self.logRegressionLayer.W ** 2).sum()

        # negative log likelihood of the MLP is given by the negative
        # log likelihood of the output of the model, computed in the
        # logistic regression layer
        self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
        # same holds for the function computing the number of errors
        self.errors = self.logRegressionLayer.errors

        # the parameters of the model are the parameters of the two layer it is
        # made out of
        self.params = self.hiddenLayer.params + self.logRegressionLayer.params
Exemplo n.º 5
0
    def __init__(self, input, label, n_in, n_hidden, n_out, rng=None):

        self.x = input
        self.y = label

        if rng is None:
            rng = numpy.random.RandomState(1234)

        # construct hidden_layer
        self.hidden_layer = HiddenLayer(input=self.x,
                                        n_in=n_in,
                                        n_out=n_hidden,
                                        rng=rng,
                                        activation=tanh)

        # construct log_layer
        self.log_layer = LogisticRegression(input=self.hidden_layer.output,
                                            label=self.y,
                                            n_in=n_hidden,
                                            n_out=n_out)
Exemplo n.º 6
0
    def cloicTest(self):
        trainDataFile = codecs.open(
            "../data/LRTestData/horseColicTraining.txt", 'r', 'utf-8')
        trainDataset = []
        trainDataLabel = []
        '''
        加载训练数据到数据集,并训练数据,得出逻辑回归参数
        '''
        for line in trainDataFile.readlines():
            curLine = line.strip().split('\t')
            lineArr = []
            for i in range(21):
                lineArr.append(float(curLine[i]))
            trainDataset.append(lineArr)
            trainDataLabel.append(float(lineArr[-1]))
        trainWeights = LogisticRegression().randomGradAscent(
            array(trainDataset), trainDataLabel, 150)
        print trainWeights
        '''
        使用测试集来对回归模型进行测试,并计算该模型的错误率
        '''
        errorCount = 0.0
        numTestVec = 0.0
        frTest = codecs.open("../data/LRTestData/horseColicTest.txt", 'r',
                             'utf-8')
        for line in frTest.readlines():
            numTestVec += 1
            curLine = line.strip().split('\t')
            lineArr = []
            for i in range(21):
                lineArr.append(float(curLine[i]))
            if int(self.checkVector(array(lineArr), trainWeights)) != int(
                    curLine[-1]):
                errorCount += 1

        errorRate = (float(errorCount / numTestVec))
        print "the error rate is %f" % errorRate
        return errorRate
Exemplo n.º 7
0
def evaluate_lenet5(learning_rate=0.1,
                    n_epochs=200,
                    dataset='emotion',
                    nkerns=[20, 50],
                    batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = Ld.load_share(dataset)
    if dataset == 'mnist':
        ishape = (28, 28)  # this is the size of MNIST images
        num_label = 10
    elif dataset == 'emotion':
        ishape = (48, 48)  # this is the size of MNIST images
        num_label = 7

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels
    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, ishape[0], ishape[1]))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 1, ishape[0],
                                             ishape[1]),
                                filter_shape=(nkerns[0], 1, 5, 5),
                                poolsize=(2, 2))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    if dataset == 'emotion':
        layer05 = LeNetConvPoolLayer(rng,
                                     input=layer0.output,
                                     image_shape=(batch_size, nkerns[0], 22,
                                                  22),
                                     filter_shape=(nkerns[0], nkerns[0], 3, 3),
                                     poolsize=(2, 2))
        layer1 = LeNetConvPoolLayer(rng,
                                    input=layer05.output,
                                    image_shape=(batch_size, nkerns[0], 10,
                                                 10),
                                    filter_shape=(nkerns[1], nkerns[0], 3, 3),
                                    poolsize=(2, 2))
    elif dataset == 'mnist':
        layer1 = LeNetConvPoolLayer(rng,
                                    input=layer0.output,
                                    image_shape=(batch_size, nkerns[0], 12,
                                                 12),
                                    filter_shape=(nkerns[1], nkerns[0], 5, 5),
                                    poolsize=(2, 2))

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng,
                         input=layer2_input,
                         n_in=nkerns[1] * 4 * 4,
                         n_out=500,
                         activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=num_label)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [
                    validate_model(i) for i in xrange(n_valid_batches)
                ]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' % \
                      (epoch, minibatch_index + 1, n_train_batches, \
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i) for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(
                        ('     epoch %i, minibatch %i/%i, test error of best '
                         'model %f %%') % (epoch, minibatch_index + 1,
                                           n_train_batches, test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i,'\
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Exemplo n.º 8
0
class SdA:
    def __init__(self,
                 input=None,
                 label=None,
                 n_ins=2,
                 hidden_layer_sizes=[3, 3],
                 n_outs=2,
                 rng=None):

        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.dA_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        assert self.n_layers > 0

        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()

            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            # construct dA_layers
            dA_layer = dA(input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layer_sizes[i],
                          W=sigmoid_layer.W,
                          hbias=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)

        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].sample_h_given_v(),
            label=self.y,
            n_in=hidden_layer_sizes[-1],
            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()

    def pretrain(self, lr=0.1, corruption_level=0.3, epochs=100):
        for i in xrange(self.n_layers):
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[i - 1].sample_h_given_v(
                    layer_input)

            da = self.dA_layers[i]

            for epoch in xrange(epochs):
                da.train(lr=lr,
                         corruption_level=corruption_level,
                         input=layer_input)

    def finetune(self, lr=0.1, epochs=100):
        layer_input = self.sigmoid_layers[-1].sample_h_given_v()

        # train log_layer
        epoch = 0

        while epoch < epochs:
            self.log_layer.train(lr=lr, input=layer_input)
            lr *= 0.95
            epoch += 1

    def predict(self, x):
        layer_input = x

        for i in xrange(self.n_layers):
            sigmoid_layer = self.sigmoid_layers[i]
            layer_input = sigmoid_layer.output(input=layer_input)

        return self.log_layer.predict(layer_input)
Exemplo n.º 9
0
 def checkVector(self, inX, weights):
     prob = LogisticRegression().sigmoid(sum(inX * weights))
     if prob > 0.5:
         return 1.0
     else:
         return 0.0
    def __init__(self, n_conv_layers=2, filter_shapes=((20, 1, 5, 5), (50, 20, 5, 5)),
                 image_shape=(500, 1, 28, 28), poolsize=(2, 2),  n_hidden_neurons = 500,
                 learning_rate=0.1, dataset_name='mnist.pkl.gz'):
        """
        Инициализирует сеть, в соответствии с переданными параметрами.

        :type n_conv_layers: int > 0
        :param n_conv_layers: количество свёрточных слоёв

        :type filter_shapes: tuple, длины n_conv_layers, состоящий из описаний фильтров(tuple длины 4)
        :param filter_shapes: каждый filter_shape имеет следующий формат:
                              (количество фильтров, количество входных каналов, высота фильтра, ширина фильтра)
                              количество фильтров соотвествует количеству выходных каналов

        :type image_shape: tuple или list длины 4
        :param image_shape: (размер одного пакета, количество входных каналов(карт признаков),
                             высота изображения, ширина изображения)

        :param poolsize: tuple длины 2

        :type n_hidden_neurons: int > 0
        :param n_hidden_neurons: количество нейронов в полносвязном скрытом слое

        :type learning_rate: double
        :param learning_rate: параметр, отвественный за скорость обучения методом градиентного спуска
        """

        # Проверка корректности входных параметров
        assert len(image_shape) == 4
        assert len(filter_shapes) == n_conv_layers
        assert len(poolsize) == 2

        self.n_conv_layers = n_conv_layers
        self.batch_size = image_shape[0]

        self.rng = numpy.random.RandomState(23455)

        # резервируем символические переменные для данных

        ######################
        # BUILD ACTUAL MODEL #
        ######################
        print '... building the model'

        x = T.matrix('x')   # the data is presented as rasterized images
        y = T.ivector('y')  # the labels are presented as 1D vector of [int] labels

        layer_input = x.reshape(image_shape)

        # лист из параметров скрытых слоёв
        params = []

        # Инициализирую сверточные слоя, в соответствии с архитектурой, указанной в параметрах
        for i in xrange(n_conv_layers):
            batch_size, n_filter_maps, image_height, image_weight = image_shape
            n_filters, n_input_filter_maps, filer_heigth, filter_weight = filter_shapes[i]
            pool_height, pool_weight = poolsize

            # Построение свёртного слоя + пулинг
            conv_layer = LeNetConvPoolLayer(
                self.rng,
                input=layer_input,
                image_shape=image_shape,
                filter_shape=filter_shapes[i],
                poolsize=poolsize
            )

            layer_input = conv_layer.output
            # Сохраняю параметры сети
            params.append(conv_layer.params)

            # Фильтр сокращает размер изображение, новый размер: (28-5+1 , 28-5+1) = (24, 24)
            image_height = image_height - filer_heigth + 1
            image_weight = image_weight - filter_weight + 1

            # maxpooling также сокращает размер, новый размер: (24/2, 24/2) = (12, 12)
            image_height /= pool_height
            image_weight /= pool_weight

            # Таким образом новый размер тензора изображения: (batch_size, 20, 12, 12)
            image_shape = (batch_size, n_filters, image_height, image_weight)

        # Результат прохождения изображений через свёрточные слои записан в layer_input
        # Размер потока данный теперь соответсвует image_shape
        # Если в сети два слоя с дефолтными параметрами, то выходное изображением имеет формат:
        # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
        # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
        # 4D output tensor is thus of shape (batch_size, 50, 4, 4)
        batch_size, n_filter_maps, image_height, image_weight = image_shape

        # Полносвязный скытый слой принимает на вход 2D матрицу, но у нас есть 4D тензор
        # Поэтому превращаем тензор в матрицу размера (batch_size, n_filters * image_height * image_weight)
        fully_connected_layer_input = layer_input.flatten(2)

        n_filter_maps = image_shape[1]
        # n_in: размерность входа
        # n_out: количество нейронов в скрытом слое
        # Построение полносвязного слоя
        # TODO: тут по-хорошему можно задавать активационную функцию в качестве параметра
        fully_connected_layer = HiddenLayer(
            self.rng,
            input=fully_connected_layer_input,
            n_in=n_filter_maps * image_height * image_weight,
            n_out=n_hidden_neurons,
            activation=T.tanh
        )

        # classify the values of the fully-connected sigmoidal layer
        logistic_regression_layer = LogisticRegression(input=fully_connected_layer.output,
                                                       n_in=n_hidden_neurons, n_out=10)
        index = T.lscalar()  # индекс пакета
        x_set = T.matrix('x_set')
        # Функция, распознающая изображения (используется уже после обучения)
        self.prediction_model = theano.function(
            [index, x_set],
            outputs=logistic_regression_layer.y_pred,
            givens={
                x: x_set[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )
        # the cost we minimize during training is the NLL of the model
        cost = logistic_regression_layer.negative_log_likelihood(y)

        self.load(dataset_name=dataset_name)

        # Создаём функцию, подсчитывающую ошибку модели
        self.test_model = theano.function(
            [index],
            logistic_regression_layer.errors(y),
            givens={
                x: self.test_set_x[index * self.batch_size: (index + 1) * self.batch_size],
                y: self.test_set_y[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )

        self.validate_model = theano.function(
            [index],
            logistic_regression_layer.errors(y),
            givens={
                x: self.valid_set_x[index * self.batch_size: (index + 1) * self.batch_size],
                y: self.valid_set_y[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )

        self.inverted_params = logistic_regression_layer.params + fully_connected_layer.params
        for i in xrange(n_conv_layers - 1, -1, -1):
            self.inverted_params += params[i]

        # Создаём список градиентов для всех параметров модели
        grads = T.grad(cost, self.inverted_params)

        # train_model это функция, которая обновляет параметры модели с помощью SGD
        # Так как модель имеет много парамметров, было бы утомтельным вручную создавать правила обновления
        # для каждой модели, поэтому мы создали updates list для автоматического прохождения по парам
        # (params[i], grads[i])
        updates = [
            (param_i, param_i - learning_rate * grad_i)
            for param_i, grad_i in zip(self.inverted_params, grads)
        ]

        self.train_model = theano.function(
            [index],
            cost,
            updates=updates,
            givens={
                x: self.train_set_x[index * self.batch_size: (index + 1) * self.batch_size],
                y: self.train_set_y[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )

        set_x = T.matrix("set_x")
        self.predict = theano.function(
            [set_x],
            logistic_regression_layer.y_pred,
            givens={
                x: set_x
            }
        )
Exemplo n.º 11
0
class DBN:
    def __init__(self, input=None, label=None, n_ins=2, hidden_layer_sizes=[3, 3], n_outs=2, rng=None):
        
        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        
        assert self.n_layers > 0


        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()
                
            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)


            # construct rbm_layer
            rbm_layer = RBM(input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layer_sizes[i],
                            W=sigmoid_layer.W,     # W, b are shared
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)


        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(input=self.sigmoid_layers[-1].sample_h_given_v(),
                                            label=self.y,
                                            n_in=hidden_layer_sizes[-1],
                                            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()



    def pretrain(self, lr=0.1, k=1, epochs=100):
        # pre-train layer-wise
        for i in xrange(self.n_layers):
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[i-1].sample_h_given_v(layer_input)
            rbm = self.rbm_layers[i]
            
            for epoch in xrange(epochs):
                rbm.contrastive_divergence(lr=lr, k=k, input=layer_input)


    def finetune(self, lr=0.1, epochs=100):
        layer_input = self.sigmoid_layers[-1].sample_h_given_v()

        # train log_layer
        epoch = 0
        done_looping = False
        while (epoch < epochs) and (not done_looping):
            self.log_layer.train(lr=lr, input=layer_input)
            
            lr *= 0.95
            epoch += 1


    def predict(self, x):
        layer_input = x
        
        for i in xrange(self.n_layers):
            sigmoid_layer = self.sigmoid_layers[i]
            layer_input = sigmoid_layer.output(input=layer_input)

        out = self.log_layer.predict(layer_input)
        return out
Exemplo n.º 12
0
class CNN:
    def __init__(self,
                 N,
                 label,
                 n_hidden,
                 n_out,
                 image_size,
                 channel,
                 n_kernels,
                 kernel_sizes,
                 pool_sizes,
                 rng=None,
                 activation=ReLU):

        if rng is None:
            rng = numpy.random.RandomState(1234)

        self.N = N
        self.n_hidden = n_hidden

        self.n_kernels = n_kernels

        self.pool_sizes = pool_sizes

        self.conv_layers = []
        self.conv_sizes = []

        # construct 1st conv_layer
        conv_layer0 = ConvPoolLayer(N, image_size, channel, n_kernels[0],
                                    kernel_sizes[0], pool_sizes[0], rng,
                                    activation)
        self.conv_layers.append(conv_layer0)

        conv_size = [
            (image_size[0] - kernel_sizes[0][0] + 1) / pool_sizes[0][0],
            (image_size[1] - kernel_sizes[0][1] + 1) / pool_sizes[0][1]
        ]
        self.conv_sizes.append(conv_size)

        # construct 2nd conv_layer
        conv_layer1 = ConvPoolLayer(N, conv_size, n_kernels[0], n_kernels[1],
                                    kernel_sizes[1], pool_sizes[1], rng,
                                    activation)
        self.conv_layers.append(conv_layer1)

        conv_size = [
            (conv_size[0] - kernel_sizes[1][0] + 1) / pool_sizes[1][0],
            (conv_size[1] - kernel_sizes[1][0] + 1) / pool_sizes[1][1]
        ]
        self.conv_sizes.append(conv_size)

        # construct hidden_layer
        self.hidden_layer = HiddenLayer(
            None, n_kernels[-1] * conv_size[0] * conv_size[1], n_hidden, None,
            None, rng, activation)

        # construct log_layer
        self.log_layer = LogisticRegression(None, label, n_hidden, n_out)

    # def train(self, epochs, learning_rate, input=None):
    def train(self, epochs, learning_rate, input, test_input=None):

        for epoch in xrange(epochs):

            if (epoch + 1) % 5 == 0:
                print 'iter = %d/%d' % (epoch + 1, epochs)

                print
                print '------------------'
                print 'TEST PROCESSING...'

                print self.predict(test_input)
                print '------------------'
                print

            # forward first conv layer
            pooled_X = self.conv_layers[0].forward(input=input)

            # forward second conv layer
            pooled_X = self.conv_layers[1].forward(input=pooled_X)

            # flatten input
            layer_input = self.flatten(pooled_X)

            # forward hidden layer
            layer_input = self.hidden_layer.forward(input=layer_input)

            # forward & backward logistic layer
            self.log_layer.train(lr=learning_rate, input=layer_input)

            # backward hidden layer
            self.hidden_layer.backward(prev_layer=self.log_layer,
                                       lr=learning_rate)

            flatten_size = self.n_kernels[-1] * self.conv_sizes[-1][
                0] * self.conv_sizes[-1][1]
            delta_flatten = numpy.zeros((self.N, flatten_size))

            for n in xrange(self.N):
                for i in xrange(flatten_size):

                    for j in xrange(self.n_hidden):
                        delta_flatten[n][i] += self.hidden_layer.W[i][
                            j] * self.hidden_layer.d_y[n][j]

            # unflatten delta
            delta = numpy.zeros(
                (len(delta_flatten), self.n_kernels[-1],
                 self.conv_sizes[-1][0], self.conv_sizes[-1][1]))

            for n in xrange(len(delta)):
                index = 0
                for k in xrange(self.n_kernels[-1]):
                    for i in xrange(self.conv_sizes[-1][0]):
                        for j in xrange(self.conv_sizes[-1][1]):
                            delta[n][k][i][j] = delta_flatten[n][index]
                            index += 1

            # backward second conv layer
            delta = self.conv_layers[1].backward(delta, self.conv_sizes[1],
                                                 learning_rate)

            # backward first conv layer
            self.conv_layers[0].backward(delta, self.conv_sizes[0],
                                         learning_rate)

    def flatten(self, input):

        flatten_size = self.n_kernels[-1] * self.conv_sizes[-1][
            0] * self.conv_sizes[-1][1]
        flattened_input = numpy.zeros((len(input), flatten_size))

        for n in xrange(len(flattened_input)):
            index = 0

            for k in xrange(self.n_kernels[-1]):
                for i in xrange(self.conv_sizes[-1][0]):
                    for j in xrange(self.conv_sizes[-1][1]):
                        flattened_input[n][index] = input[n][k][i][j]
                        index += 1

        # print flattened_input

        return flattened_input

    def predict(self, x):

        pooled_X = self.conv_layers[0].forward(input=x)

        pooled_X = self.conv_layers[1].forward(input=pooled_X)

        layer_input = self.flatten(pooled_X)

        x = self.hidden_layer.output(input=layer_input)

        return self.log_layer.predict(x)
Exemplo n.º 13
0
def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset="emotion", nkerns=[20, 50], batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = Ld.load_share(dataset)
    if dataset == "mnist":
        ishape = (28, 28)  # this is the size of MNIST images
        num_label = 10
    elif dataset == "emotion":
        ishape = (48, 48)  # this is the size of MNIST images
        num_label = 7

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix("x")  # the data is presented as rasterized images
    y = T.ivector("y")  # the labels are presented as 1D vector of
    # [int] labels
    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print "... building the model"

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, ishape[0], ishape[1]))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, ishape[0], ishape[1]),
        filter_shape=(nkerns[0], 1, 5, 5),
        poolsize=(2, 2),
    )

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    if dataset == "emotion":
        layer05 = LeNetConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 22, 22),
            filter_shape=(nkerns[0], nkerns[0], 3, 3),
            poolsize=(2, 2),
        )
        layer1 = LeNetConvPoolLayer(
            rng,
            input=layer05.output,
            image_shape=(batch_size, nkerns[0], 10, 10),
            filter_shape=(nkerns[1], nkerns[0], 3, 3),
            poolsize=(2, 2),
        )
    elif dataset == "mnist":
        layer1 = LeNetConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 12, 12),
            filter_shape=(nkerns[1], nkerns[0], 5, 5),
            poolsize=(2, 2),
        )

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=num_label)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size : (index + 1) * batch_size],
            y: test_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size : (index + 1) * batch_size],
            y: valid_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size : (index + 1) * batch_size],
            y: train_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    ###############
    # TRAIN MODEL #
    ###############
    print "... training"
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.0
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print "training @ iter = ", iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print (
                    "epoch %i, minibatch %i/%i, validation error %f %%"
                    % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.0)
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    # improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss * improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)
                    print (
                        ("     epoch %i, minibatch %i/%i, test error of best " "model %f %%")
                        % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.0)
                    )

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print ("Optimization complete.")
    print (
        "Best validation score of %f %% obtained at iteration %i,"
        "with test performance %f %%" % (best_validation_loss * 100.0, best_iter + 1, test_score * 100.0)
    )
    print >> sys.stderr, (
        "The code for file " + os.path.split(__file__)[1] + " ran for %.2fm" % ((end_time - start_time) / 60.0)
    )