def new_neuralnet(train_set):
    neural_net = NeuralNetwork()

    # Adicionando a camada de input no camada 0
    neural_net.camadas.append(
        Layer(False, train_set.shape[1], train_set.shape[1]))
    neural_net.functions.append(identidade)
    neural_net.derivatives.append(identidade)

    # Adicionando a camada escondida com 342 neurônios na camada 1
    neural_net.camadas.append(Layer(True, train_set.shape[1], 342))
    neural_net.functions.append(relu)
    neural_net.derivatives.append(reluDerivative)

    # Adicionando a camada escondida com 180 neurônios na camada 2
    neural_net.camadas.append(Layer(True, 342, 180))
    neural_net.functions.append(relu)
    neural_net.derivatives.append(reluDerivative)

    # Adicionando a camada de saída com 10 neurônios na camada 3
    neural_net.camadas.append(Layer(True, 180, 10))
    neural_net.functions.append(softmax)
    neural_net.derivatives.append(softmax_derivative)

    return neural_net
Exemplo n.º 2
0
def new_neuralnet(train_set):
    neural_softmax = NeuralNetwork()

    # Adicionando a camada de input no indice 0
    neural_softmax.camadas.append(Layer(False, train_set.shape[1], train_set.shape[1]))
    neural_softmax.functions.append(identidade)
    neural_softmax.derivatives.append(identidade)

    # Adicionando a camada de saída com 10 neurônios no índice 1
    neural_softmax.camadas.append(Layer(True, train_set.shape[1], 10))
    neural_softmax.functions.append(softmax)
    neural_softmax.derivatives.append(softmax_derivative)

    return neural_softmax
Exemplo n.º 3
0
def generate_layers_linear_regression():
    input_neuron = Neuron('input_neuron', sigmoid)
    output_neuron = Neuron('output_neuron', sigmoid)
    independ_neuron = Neuron('independ_neuron', sigmoid, initial=1)

    input_neurons = [input_neuron]
    input_synapses = [
        Synapse(input_neuron, output_neuron, 1.0),
    ]
    input_layer = Layer('input_layer', input_neurons, input_synapses)
    input_layer.set_linked_synapses()

    layer_1_neurons = [independ_neuron]
    layer_1_synapses = [
        Synapse(independ_neuron, output_neuron, 1.0),
    ]
    layer_1 = Layer('layer_1', layer_1_neurons, layer_1_synapses)
    layer_1.set_linked_synapses()

    output_neurons = [output_neuron]
    output_synapses = [
        Synapse(output_neuron, output_neuron, 1.0),
    ]
    output_layer = Layer('output_layer', output_neurons, output_synapses)
    output_layer.set_linked_synapses()

    all_layers = [input_layer, layer_1, output_layer]

    return all_layers
Exemplo n.º 4
0
TODO: use GUI to generate input file

"""
import numpy as np
import matplotlib.pyplot as plt

from LayerClass import Layer
from ExperimentClass import Experiment
from Functions import SFCalc, MakeSequence, Post

_OutputFile = "../Projects/test1"
_iter = 10

# SAMPLE DEFINITION
# Sample = [vacuum , Top Layer, ..., Substrate]
Sample = [Layer(), Layer(), Layer(), Layer()]

# Sample[i].TakeValues[["Element"], nmultilayer,
#                            Sample.density,
#                            Sample.thick,
#                            Sample.roughness,
#                            Sample.MMC,
#                            Sample.phi,
#                            SAmple.gamma]

Sample[1].TakeValues([
    "W", 10, [0.05, 0.0653, .12], [5., 10., 20.], [0, 0, 2], [0, 0, 1],
    [0, 0, 90], [0, 0, 90]
])
Sample[2].TakeValues([
    "Si", 10, [0.02, 0.05, .12], [0, 40, 60], [0, 0, 2], [0, 0, 1], [0, 0, 90],
Exemplo n.º 5
0
def generate_layers_xor():
    input_neuron_1 = Neuron('input_neuron_1', linear)
    input_neuron_2 = Neuron('input_neuron_2', linear)
    neuron_1_1 = Neuron('neuron_1_1', sigmoid)
    neuron_1_2 = Neuron('neuron_1_2', sigmoid)
    output_neuron = Neuron('output_neuron', sigmoid)

    input_neurons = [input_neuron_1, input_neuron_2]
    input_synapses = [
        Synapse(input_neuron_1, neuron_1_1, 0.45),
        Synapse(input_neuron_1, neuron_1_2, 0.78),
        Synapse(input_neuron_2, neuron_1_1, -0.12),
        Synapse(input_neuron_2, neuron_1_2, 0.13),
    ]
    input_layer = Layer('input_layer', input_neurons, input_synapses)
    input_layer.set_linked_synapses()

    layer_1_neurons = [
        neuron_1_1,
        neuron_1_2,
    ]
    layer_1_synapses = [
        Synapse(neuron_1_1, output_neuron, 1.5),
        Synapse(neuron_1_2, output_neuron, -2.3),
    ]
    layer_1 = Layer('layer_1', layer_1_neurons, layer_1_synapses)
    layer_1.set_linked_synapses()

    output_neurons = [output_neuron]
    output_synapses = [
        Synapse(output_neuron, output_neuron, 1.0),
    ]
    output_layer = Layer('output_layer', output_neurons, output_synapses)
    output_layer.set_linked_synapses()

    all_layers = [input_layer, layer_1, output_layer]

    return all_layers