Exemplo n.º 1
0
    def init(self, lf=False, ol=False):
        model = Sequential()
        input_done = False
        if self.flatten:
            model.add(Flatten(name="flatten", input_shape=self.in_shape))
            input_done = True
        for i, h in enumerate(self.hiddens):
            if input_done == False:
                model.add(Dense(h.neurons, activation='relu', name="additional_hidden_" + str(i), input_shape=self.in_shape))
            else:
                model.add(Dense(h.neurons, activation='relu', name="additional_hidden_" + str(i)))
                if h.dropout > 0:
                    model.add(Dropout(h.dropout, name="additional_dropout_" + str(i)))
        if input_done == False:
            model.add(Dense(self.out_shape, name="dense", input_shape=self.in_shape))
        else:
            model.add(Dense(self.out_shape, name="dense"))

        model.add(Activation("softmax", name="softmax"))
        if lf and self.labelflip_decay is not None:
            model.add(LabelFlipNoise(weight_decay=self.labelflip_decay, trainable=True))
        if ol and self.outlier_alpha is not None:
            model.add(OutlierNoise(alpha=self.outlier_alpha))
        self._model = model
        return self
def new_model(in_shape, out_shape, hiddens=[], lf=False, lf_decay=0.1):
    # type: (list, list, list(Hidden), bool, float) -> Sequential
    model = Sequential()
    model.add(Flatten(name="flatten", input_shape=in_shape))

    for i, h in enumerate(hiddens):
        model.add(
            Dense(h.neurons,
                  activation='relu',
                  name="additional_hidden_" + str(i)))
        if h.dropout > 0:
            model.add(Dropout(h.dropout, name="additional_dropout_" + str(i)))
    model.add(Dense(out_shape, name="dense"))
    model.add(Activation("softmax", name="softmax"))
    if lf:
        model.add(LabelFlipNoise(weight_decay=lf_decay, trainable=True))
    return model
Exemplo n.º 3
0
 def on_train_begin(self, logs={}):
     self.model = Sequential()
     for layer in self.model.layers:
         if isinstance(layer, LabelFlipNoise):
             layer = LabelFlipNoise()
             layer.trainable = True