Exemplo n.º 1
0
def test_search(b, qns):
    """
    Test finding neighbors for a given query vector and type of box.

    Parameters
    ----------
    b : list
        MDAnalysis dimensions like list
    qns : tuple
        a query point and a list of expected neighbors.
    """
    b = np.array(b, dtype=np.float32)
    q = transform_StoR(np.array(qns[0], dtype=np.float32), b)
    # Setting up the periodic tree
    tree = PeriodicKDTree(b)
    coords = transform_StoR(f_dataset, b)
    tree.set_coords(coords)  # Input real space coordinates
    # Carry out the search and retrieve results
    tree.search(q, radius)
    indices = tree.get_indices()
    if indices:
        found_neighbors = np.sort(coords[indices], axis=0)
    else:
        found_neighbors = list()
    if qns[1]:
        expected_neighbors = transform_StoR(np.array(qns[1],dtype=np.float32), b)
        expected_neighbors = np.sort(expected_neighbors, axis=0)
    else:
        expected_neighbors = list()
    assert_equal(found_neighbors, expected_neighbors)
Exemplo n.º 2
0
def test_searchfail():
    coords = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.float32)
    b = np.array([10, 10, 10, 90, 90, 90], dtype=np.float32)
    cutoff = 1.0
    search_radius = 2.0
    query = np.array([1, 1, 1], dtype=np.float32)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    match = 'Set cutoff greater or equal to the radius.'
    with pytest.raises(RuntimeError, match=match):
        tree.search(query, search_radius)
Exemplo n.º 3
0
def test_searchfail():
    coords = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.float32)
    b = np.array([10, 10, 10, 90, 90, 90], dtype=np.float32)
    cutoff = 1.0
    search_radius = 2.0
    query = np.array([1, 1, 1], dtype=np.float32)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    match = 'Set cutoff greater or equal to the radius.'
    with pytest.raises(RuntimeError, match=match):
        tree.search(query, search_radius)
Exemplo n.º 4
0
def test_nopbc():
    cutoff = 0.3
    q = np.array([0.2, 0.3, 0.1])
    coords = f_dataset.copy()
    tree = PeriodicKDTree(box=None)
    tree.set_coords(coords)
    indices = tree.search(q, cutoff)
    assert_equal(indices, [0, 2])
Exemplo n.º 5
0
def test_nopbc():
    cutoff = 0.3
    q = np.array([0.2, 0.3, 0.1])
    coords = f_dataset.copy()
    tree = PeriodicKDTree(box=None)
    tree.set_coords(coords)
    indices = tree.search(q, cutoff)
    assert_equal(indices, [0, 2])
Exemplo n.º 6
0
class CollisionDetector(object):
    """Given a set of N particles this class allows to query if any new particle
    will overlap. If particles overlap this is called a collision

    Example
    -------
    >>> cd = CollisionDetector(coords, 3.81, [100, 100, 100])
    >>> cd.collision([50, 50, 50])

    """
    def __init__(self, coords, diameter, box):
        """
        Parameters
        ----------
        coords : array_like (N, 3)
            coordinates of N particles
        diameter : float
            diameter of particles
        box : array_like (3)
            box dimensions
        """
        fullbox = 90 * np.ones(6, dtype=np.float32)
        fullbox[:3] = box
        coords = np.asarray(coords, dtype=np.float32)
        max_cutoff = np.sum(np.sqrt(fullbox**2)) / 2
        self._kdt = PKDTree(fullbox)
        self._kdt.set_coords(coords, cutoff=max_cutoff)
        self._diameter = diameter

    def collision(self, pos):
        """check is there is a collision

        Parameters
        ----------
        pos : array_like (3)
             coordinates of new particles

        Returns
        -------
        collision : bool
             ``True`` if there is a collision,
        """
        pos = np.asarray(pos, dtype=np.float32)
        self._kdt.search(pos, self._diameter)
        indices = self._kdt.get_indices()
        return len(indices) != 0
Exemplo n.º 7
0
def test_search(b, q, result):
    b = np.array(b, dtype=np.float32)
    q = transform_StoR(np.array(q, dtype=np.float32), b)
    cutoff = 3.0
    coords = transform_StoR(f_dataset, b)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    indices = tree.search(q, cutoff)
    assert_equal(indices, result)
Exemplo n.º 8
0
def test_search(b, q, result):
    b = np.array(b, dtype=np.float32)
    q = transform_StoR(np.array(q, dtype=np.float32), b)
    cutoff = 3.0
    coords = transform_StoR(f_dataset, b)
    tree = PeriodicKDTree(box=b)
    tree.set_coords(coords, cutoff=cutoff)
    indices = tree.search(q, cutoff)
    assert_equal(indices, result)
Exemplo n.º 9
0
class AtomNeighborSearch(object):
    """This class can be used to find all atoms/residues/segments within the
    radius of a given query position.

    For the neighbor search, this class uses the BioPython KDTree and its
    wrapper PeriodicKDTree for non-periodic and periodic systems, respectively.
    """

    def __init__(self, atom_group, box=None, bucket_size=10):
        """

        Parameters
        ----------
        atom_list : AtomGroup
          list of atoms
        box : array-like or ``None``, optional, default ``None``
          Simulation cell dimensions in the form of
          :attr:`MDAnalysis.trajectory.base.Timestep.dimensions` when
          periodic boundary conditions should be taken into account for
          the calculation of contacts.
        bucket_size : int
          Number of entries in leafs of the KDTree. If you suffer poor
          performance you can play around with this number. Increasing the
          `bucket_size` will speed up the construction of the KDTree but
          slow down the search.
        """
        self.atom_group = atom_group
        self._u = atom_group.universe
        self._box = box
        if box is None:
            self.kdtree = KDTree(dim=3, bucket_size=bucket_size)
        else:
            self.kdtree = PeriodicKDTree(box, bucket_size=bucket_size)
        self.kdtree.set_coords(atom_group.positions)

    def search(self, atoms, radius, level='A'):
        """
        Return all atoms/residues/segments that are within *radius* of the
        atoms in *atoms*.

        Parameters
        ----------
        atoms : AtomGroup, MDAnalysis.core.groups.Atom
          list of atoms
        radius : float
          Radius for search in Angstrom.
        level : str
          char (A, R, S). Return atoms(A), residues(R) or segments(S) within
          *radius* of *atoms*.
        """
        if isinstance(atoms, Atom):
            positions = atoms.position.reshape(1, 3)
        else:
            positions = atoms.positions

        indices = []
        for pos in positions:
            self.kdtree.search(pos, radius)
            indices.append(self.kdtree.get_indices())
        unique_idx = np.unique([i for l in indices for i in l]).astype(np.int64)
        return self._index2level(unique_idx, level)

    def _index2level(self, indices, level):
        """Convert list of atom_indices in a AtomGroup to either the
        Atoms or segments/residues containing these atoms.

        Parameters
        ----------
        indices
           list of atom indices
        level : str
          char (A, R, S). Return atoms(A), residues(R) or segments(S) within
          *radius* of *atoms*.
        """
        n_atom_list = self.atom_group[indices]
        if level == 'A':
            if not n_atom_list:
                return []
            else:
                return n_atom_list
        elif level == 'R':
            return list({a.residue for a in n_atom_list})
        elif level == 'S':
            return list(set([a.segment for a in n_atom_list]))
        else:
            raise NotImplementedError('{0}: level not implemented'.format(level))