Exemplo n.º 1
0
def test_shear_from_matrix():
    # This seems to fail sometimes if the random numbers
    # roll certain values....
    # angle = (random.random() - 0.5) * 4*math.pi
    # direct = np.random.random(3) - 0.5
    # point = np.random.random(3) - 0.5
    # normal = np.cross(direct, np.random.random(3))
    # So here are some of my random numbers
    angle = 2.8965075413405783
    direct = np.array([-0.31117458, -0.41769518, -0.01188556])
    point = np.array([-0.0035982, -0.40997482, 0.42241425])
    normal = np.cross(direct, np.array([0.08122421, 0.4747914, 0.19851859]))

    S0 = t.shear_matrix(angle, direct, point, normal)
    angle, direct, point, normal = t.shear_from_matrix(S0)
    S1 = t.shear_matrix(angle, direct, point, normal)
    assert_equal(t.is_same_transform(S0, S1), True)
Exemplo n.º 2
0
def test_shear_from_matrix():
    # This seems to fail sometimes if the random numbers
    # roll certain values....
    # angle = (random.random() - 0.5) * 4*math.pi
    # direct = np.random.random(3) - 0.5
    # point = np.random.random(3) - 0.5
    # normal = np.cross(direct, np.random.random(3))
    # So here are some of my random numbers
    angle = 2.8965075413405783
    direct = np.array([-0.31117458, -0.41769518, -0.01188556])
    point = np.array([-0.0035982, -0.40997482,  0.42241425])
    normal = np.cross(direct, np.array([ 0.08122421,  0.4747914 ,  0.19851859]))

    S0 = t.shear_matrix(angle, direct, point, normal)
    angle, direct, point, normal = t.shear_from_matrix(S0)
    S1 = t.shear_matrix(angle, direct, point, normal)
    assert_equal(t.is_same_transform(S0, S1), True)
Exemplo n.º 3
0
def test_shear_from_matrix():
    # This seems to fail sometimes if the random numbers
    # roll certain values....
    # angle = (random.random() - 0.5) * 4*np.pi
    # direct = np.random.random(3) - 0.5
    # point = np.random.random(3) - 0.5
    # normal = np.cross(direct, np.random.random(3))
    # In this random configuration the test will fail about 0.05% of all times.
    # Then we hit some edge-cases of the algorithm. The edge cases for these
    # values are slightly different for the linalg library used (MKL/LAPACK).
    # So here are some of my random numbers
    angle = 2.8969075413405783  # arbitrary values
    direct = np.array([-0.31117458, -0.41769518, -0.01188556])
    point = np.array([-0.0035982, -0.40997482, 0.42241425])
    normal = np.cross(direct, np.array([0.08122421, 0.4747914, 0.19851859]))

    S0 = t.shear_matrix(angle, direct, point, normal)
    angle, direct, point, normal = t.shear_from_matrix(S0)
    S1 = t.shear_matrix(angle, direct, point, normal)
    assert_equal(t.is_same_transform(S0, S1), True)
Exemplo n.º 4
0
def test_shear_from_matrix():
    # This seems to fail sometimes if the random numbers
    # roll certain values....
    # angle = (random.random() - 0.5) * 4*np.pi
    # direct = np.random.random(3) - 0.5
    # point = np.random.random(3) - 0.5
    # normal = np.cross(direct, np.random.random(3))
    # In this random configuration the test will fail about 0.05% of all times.
    # Then we hit some edge-cases of the algorithm. The edge cases for these
    # values are slightly different for the linalg library used (MKL/LAPACK).
    # So here are some of my random numbers
    angle = 2.8969075413405783  # arbitrary values
    direct = np.array([-0.31117458, -0.41769518, -0.01188556])
    point = np.array([-0.0035982, -0.40997482, 0.42241425])
    normal = np.cross(direct, np.array([0.08122421, 0.4747914, 0.19851859]))

    S0 = t.shear_matrix(angle, direct, point, normal)
    angle, direct, point, normal = t.shear_from_matrix(S0)
    S1 = t.shear_matrix(angle, direct, point, normal)
    assert_equal(t.is_same_transform(S0, S1), True)