def __init__(self, args):
        super(Decoder, self).__init__()
        self.dim_h = args.dim_h
        self.n_z = args.n_z
        self.output = args.n_input

        self.dec1 = MLPLayer(self.n_z, self.dim_h, args.sigma_prior)
        #self.bn1 = nn.BatchNorm1d(self.dim_h)
        self.dec1_act = nn.Tanh()
        self.dec2 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        #self.bn2 = nn.BatchNorm1d(self.dim_h)
        self.dec2_act = nn.Tanh()
        self.dec3 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        #self.bn3 = nn.BatchNorm1d(self.dim_h)
        self.dec3_act = nn.Tanh()
        self.dec4 = MLPLayer(self.dim_h, self.output, args.sigma_prior)
Exemplo n.º 2
0
    def __init__(self, args):
        super(Encoder, self).__init__()

        self.dim_h = args.dim_h
        self.n_z = args.n_z
        self.input = args.n_input

        self.l1 = MLPLayer(self.input, self.dim_h, args.sigma_prior)
        self.l1_act = nn.ReLU()
        self.l2 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l2_act = nn.ReLU()
        self.l3 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l3_act = nn.ReLU()
        self.l4 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l4_act = nn.ReLU()
        self.l5 = MLPLayer(self.dim_h, self.n_z, args.sigma_prior)
Exemplo n.º 3
0
    def __init__(self, args):
        super(Encoder, self).__init__()
        self.dim_h = args.dim_h
        self.n_z = args.n_z
        self.input = args.n_input

        self.enc1 = MLPLayer(self.input, self.dim_h * 4, args.sigma_prior)
        self.bn1 = nn.BatchNorm1d(self.dim_h * 4)
        self.enc1_act = nn.ReLU()
        self.enc2 = MLPLayer(self.dim_h * 4, self.dim_h * 2, args.sigma_prior)
        self.bn2 = nn.BatchNorm1d(self.dim_h * 2)
        self.enc2_act = nn.ReLU()
        self.enc3 = MLPLayer(self.dim_h * 2, self.dim_h, args.sigma_prior)
        self.bn3 = nn.BatchNorm1d(self.dim_h)
        self.enc3_act = nn.ReLU()
        self.enc4 = MLPLayer(self.dim_h, self.n_z, args.sigma_prior)
        self.enc5 = MLPLayer(self.dim_h, self.n_z, args.sigma_prior)
    def __init__(self, args):
        super(Decoder, self).__init__()
        self.dim_h = args.dim_h
        self.n_z = args.n_z
        self.output = args.n_input

        self.label_emb = nn.Embedding(y_dim, args.n_z)

        self.dec1 = MLPLayer(self.n_z, self.dim_h * 2, args.sigma_prior)
        self.bn1 = nn.BatchNorm1d(self.dim_h * 2)
        self.dec1_act = nn.ReLU()
        self.dec2 = MLPLayer(self.dim_h * 2, self.dim_h * 2, args.sigma_prior)
        self.bn2 = nn.BatchNorm1d(self.dim_h * 2)
        self.dec2_act = nn.ReLU()
        self.dec3 = MLPLayer(self.dim_h * 2, self.dim_h * 2, args.sigma_prior)
        self.bn3 = nn.BatchNorm1d(self.dim_h * 2)
        self.dec3_act = nn.ReLU()
        self.dec3_1 = MLPLayer(self.dim_h * 2, self.dim_h * 2,
                               args.sigma_prior)
        self.bn3_1 = nn.BatchNorm1d(self.dim_h * 2)
        self.dec3_1_act = nn.ReLU()
        self.dec4 = MLPLayer(self.dim_h * 2, self.output, args.sigma_prior)
        # self.bn4 = nn.BatchNorm1d(self.output)
        self.dec4_act = nn.Tanh()
    def __init__(self, args):
        super(Decoder, self).__init__()

        self.output = args.n_input
        self.dim_h = args.dim_h
        self.n_z = args.n_z

        self.l1 = MLPLayer(self.n_z, self.dim_h, args.sigma_prior)
        self.l1_act = nn.Tanh()
        self.l2 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l2_act = nn.Tanh()
        self.l3 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l3_act = nn.Tanh()
        self.l4 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l4_act = nn.Tanh()
        self.l5 = MLPLayer(self.dim_h, self.dim_h, args.sigma_prior)
        self.l5_act = nn.Tanh()
        self.l6 = MLPLayer(self.dim_h, self.output, args.sigma_prior)