import numpy as np import pickle """ Used to generate trained GB models with different train-test splits. """ np.random.seed(100) df = pickle.load(open('../../data/pairs_pdos.pkl')) if True: X,y = train_prep_pdos(df,include_WF=True,dE=0.1) model_type = 'pdos' else: X,y = train_prep(df,include_WF=True) model_type = 'moments' if False: X_train, X_dev, X_test, y_train, y_dev, y_test = split_by_cols(df,X,y,['comp','ads_a','ads_b']) split_type = 'comp_rxn' elif True: X_train, X_dev, X_test, y_train, y_dev, y_test = split_by_cols(df,X,y,['comp']) split_type = 'comp' elif False: X_train, X_dev, X_test, y_train, y_dev, y_test = split_by_cols(df,X,y,['ads_a','ads_b']) split_type = 'rxn' else: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) X_dev, X_test, y_dev, y_test = train_test_split(X_test,y_test,test_size=0.5) split_type = 'random'
errors = abs(predictions - test_labels) mae = np.mean(errors) print('Model Performance') print('Average Error: {:0.4f} eV.'.format(mae)) return mae if __name__ == '__main__': df = pickle.load(open('data/pairs_pdos.pkl')) features = 'moments' # #pdos,'moments' bayes = True #Feature Selection if features == 'moments': X, y = train_prep(df) elif features == 'pdos': X, y = train_prep_pdos(df, stack=False, include_WF=False, dE=0.1) X_train, X_dev, X_test, y_train, y_dev, y_test, groups = split_by_cols( df, X, y, ['comp', 'ads_a', 'ads_b'], ret_groups=True) rf = ensemble.RandomForestRegressor(n_estimators=100) group_kfold = GroupKFold(n_splits=3) #print(X_train.shape[1]),np.sqrt(X_train.shape[1]) if bayes: random_grid = { #'n_estimators': (5,100), 'max_features': (int(np.sqrt(X_train.shape[1])), X_train.shape[1]), 'max_depth': (5, 50),
import pickle import matplotlib.pyplot as plt from ML_prep import load_data, split_by_cols, train_prep_pdos, train_prep import numpy as np df = pickle.load(open('data/pairs_pdos.pkl')) X,y = train_prep_pdos(df,include_WF=True,dE=0.1) X1,y1 = train_prep(df,include_WF=True) i = 1094 #i = 889 n = 2 figsize = (8,8) if n == 2: fig1 = plt.figure(facecolor=(0.75,)*3,figsize=figsize) fig2 = plt.figure(facecolor=(0.75,)*3,figsize=figsize) axs = [fig1.add_subplot(111),fig2.add_subplot(111)] else: fig = plt.figure(figsize=figsize) axs = [fig.add_subplot(111)] while True: print i Xi = X[i] axs[0].fill_between(range(200),[0]*200,Xi[:200],facecolor='deepskyblue',edgecolor='none') axs[0].fill_between(range(199,352),[0]*(352-199),Xi[199:352],facecolor='deepskyblue',edgecolor='none',alpha=0.3) if n == 2: