Exemplo n.º 1
0
 def testVariablesSetDevice(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     # Force all Variables to reside on the device.
     with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
       inception.inception_v3(inputs, num_classes)
     with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
       inception.inception_v3(inputs, num_classes)
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
       self.assertDeviceEqual(v.device, '/cpu:0')
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
       self.assertDeviceEqual(v.device, '/gpu:0')
Exemplo n.º 2
0
 def testTrainEvalWithReuse(self):
   train_batch_size = 5
   eval_batch_size = 2
   height, width = 150, 150
   num_classes = 1000
   with self.test_session() as sess:
     train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
     inception.inception_v3(train_inputs, num_classes)
     tf.get_variable_scope().reuse_variables()
     eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
     logits, _ = inception.inception_v3(eval_inputs, num_classes,
                                        is_training=False)
     predictions = tf.argmax(logits, 1)
     sess.run(tf.global_variables_initializer())
     output = sess.run(predictions)
     self.assertEquals(output.shape, (eval_batch_size,))
Exemplo n.º 3
0
 def testBuildLogits(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = inception.inception_v3(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
Exemplo n.º 4
0
 def testEvaluation(self):
   batch_size = 2
   height, width = 299, 299
   num_classes = 1000
   with self.test_session() as sess:
     eval_inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = inception.inception_v3(eval_inputs, num_classes,
                                        is_training=False)
     predictions = tf.argmax(logits, 1)
     sess.run(tf.global_variables_initializer())
     output = sess.run(predictions)
     self.assertEquals(output.shape, (batch_size,))
Exemplo n.º 5
0
 def testHalfSizeImages(self):
   batch_size = 5
   height, width = 150, 150
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, end_points = inception.inception_v3(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points['mixed_8x8x2048b']
     self.assertListEqual(pre_pool.get_shape().as_list(),
                          [batch_size, 3, 3, 2048])
Exemplo n.º 6
0
 def testUnknowBatchSize(self):
   batch_size = 1
   height, width = 299, 299
   num_classes = 1000
   with self.test_session() as sess:
     inputs = tf.placeholder(tf.float32, (None, height, width, 3))
     logits, _ = inception.inception_v3(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [None, num_classes])
     images = tf.random_uniform((batch_size, height, width, 3))
     sess.run(tf.global_variables_initializer())
     output = sess.run(logits, {inputs: images.eval()})
     self.assertEquals(output.shape, (batch_size, num_classes))
Exemplo n.º 7
0
 def testBuildEndPoints(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     _, end_points = inception.inception_v3(inputs, num_classes)
     self.assertTrue('logits' in end_points)
     logits = end_points['logits']
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertTrue('aux_logits' in end_points)
     aux_logits = end_points['aux_logits']
     self.assertListEqual(aux_logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points['mixed_8x8x2048b']
     self.assertListEqual(pre_pool.get_shape().as_list(),
                          [batch_size, 8, 8, 2048])