Exemplo n.º 1
0
    def forward(
        ctx,
        in_coords_keys: list,
        out_coords_key: CoordinateMapKey,
        coordinate_manager: CoordinateManager,
        *in_feats,
    ):
        assert isinstance(
            in_feats, (list, tuple)), "Input must be a collection of Tensors"
        assert len(in_feats) > 1, "input must be a set with at least 2 Tensors"
        assert len(in_feats) == len(
            in_coords_keys
        ), "The input features and keys must have the same length"

        union_maps = coordinate_manager.union_map(in_coords_keys,
                                                  out_coords_key)
        out_feat = torch.zeros(
            (coordinate_manager.size(out_coords_key), in_feats[0].shape[1]),
            dtype=in_feats[0].dtype,
            device=in_feats[0].device,
        )
        for in_feat, union_map in zip(in_feats, union_maps):
            out_feat[union_map[1]] += in_feat[union_map[0]]
        ctx.keys = (in_coords_keys, coordinate_manager)
        ctx.save_for_backward(*union_maps)
        return out_feat
    def __init__(
        self,
        features: torch.Tensor,
        coordinates: torch.Tensor = None,
        # optional coordinate related arguments
        tensor_stride: StrideType = 1,
        coordinate_field_map_key: CoordinateMapKey = None,
        coordinate_manager: CoordinateManager = None,
        quantization_mode:
        SparseTensorQuantizationMode = SparseTensorQuantizationMode.
        UNWEIGHTED_AVERAGE,
        # optional manager related arguments
        allocator_type: GPUMemoryAllocatorType = None,
        minkowski_algorithm: MinkowskiAlgorithm = None,
        requires_grad=None,
        device=None,
    ):
        r"""

        Args:
            :attr:`features` (:attr:`torch.FloatTensor`,
            :attr:`torch.DoubleTensor`, :attr:`torch.cuda.FloatTensor`, or
            :attr:`torch.cuda.DoubleTensor`): The features of a sparse
            tensor.

            :attr:`coordinates` (:attr:`torch.IntTensor`): The coordinates
            associated to the features. If not provided, :attr:`coordinate_map_key`
            must be provided.

            :attr:`tensor_stride` (:attr:`int`, :attr:`list`,
            :attr:`numpy.array`, or :attr:`tensor.Tensor`): The tensor stride
            of the current sparse tensor. By default, it is 1.

            :attr:`coordinate_field_map_key`
            (:attr:`MinkowskiEngine.CoordinateMapKey`): When the coordinates
            are already cached in the MinkowskiEngine, we could reuse the same
            coordinate map by simply providing the coordinate map key. In most
            case, this process is done automatically. When you provide a
            `coordinate_field_map_key`, `coordinates` will be be ignored.

            :attr:`coordinate_manager`
            (:attr:`MinkowskiEngine.CoordinateManager`): The MinkowskiEngine
            manages all coordinate maps using the `_C.CoordinateMapManager`. If
            not provided, the MinkowskiEngine will create a new computation
            graph. In most cases, this process is handled automatically and you
            do not need to use this.

            :attr:`quantization_mode`
            (:attr:`MinkowskiEngine.SparseTensorQuantizationMode`): Defines how
            continuous coordinates will be quantized to define a sparse tensor.
            Please refer to :attr:`SparseTensorQuantizationMode` for details.

            :attr:`allocator_type`
            (:attr:`MinkowskiEngine.GPUMemoryAllocatorType`): Defines the GPU
            memory allocator type. By default, it uses the c10 allocator.

            :attr:`minkowski_algorithm`
            (:attr:`MinkowskiEngine.MinkowskiAlgorithm`): Controls the mode the
            minkowski engine runs, Use
            :attr:`MinkowskiAlgorithm.MEMORY_EFFICIENT` if you want to reduce
            the memory footprint. Or use
            :attr:`MinkowskiAlgorithm.SPEED_OPTIMIZED` if you want to make it
            run fasterat the cost of more memory.

            :attr:`requires_grad` (:attr:`bool`): Set the requires_grad flag.

            :attr:`device` (:attr:`torch.device`): Set the device the sparse
            tensor is defined.
        """
        # Type checks
        assert isinstance(features,
                          torch.Tensor), "Features must be a torch.Tensor"
        assert (
            features.ndim == 2
        ), f"The feature should be a matrix, The input feature is an order-{features.ndim} tensor."
        assert isinstance(quantization_mode, SparseTensorQuantizationMode)
        assert quantization_mode in [
            SparseTensorQuantizationMode.UNWEIGHTED_AVERAGE,
            SparseTensorQuantizationMode.UNWEIGHTED_SUM,
            SparseTensorQuantizationMode.RANDOM_SUBSAMPLE,
            SparseTensorQuantizationMode.MAX_POOL,
        ], "invalid quantization mode"

        self.quantization_mode = quantization_mode

        if coordinates is not None:
            assert isinstance(coordinates, torch.Tensor)
        if coordinate_field_map_key is not None:
            assert isinstance(coordinate_field_map_key, CoordinateMapKey)
        if coordinate_manager is not None:
            assert isinstance(coordinate_manager, CoordinateManager)
        if coordinates is None and (coordinate_field_map_key is None
                                    or coordinate_manager is None):
            raise ValueError(
                "Either coordinates or (coordinate_field_map_key, coordinate_manager) pair must be provided."
            )

        Tensor.__init__(self)

        # To device
        if device is not None:
            features = features.to(device)
            if coordinates is not None:
                # assertion check for the map key done later
                coordinates = coordinates.to(device)

        self._D = (coordinates.size(1) -
                   1 if coordinates is not None else coordinate_manager.D)
        ##########################
        # Setup CoordsManager
        ##########################
        if coordinate_manager is None:
            # If set to share the coords man, use the global coords man
            if (sparse_tensor_operation_mode() ==
                    SparseTensorOperationMode.SHARE_COORDINATE_MANAGER):
                coordinate_manager = global_coordinate_manager()
                if coordinate_manager is None:
                    coordinate_manager = CoordinateManager(
                        D=self._D,
                        coordinate_map_type=CoordinateMapType.CUDA
                        if coordinates.is_cuda else CoordinateMapType.CPU,
                        allocator_type=allocator_type,
                        minkowski_algorithm=minkowski_algorithm,
                    )
                    set_global_coordinate_manager(coordinate_manager)
            else:
                coordinate_manager = CoordinateManager(
                    D=coordinates.size(1) - 1,
                    coordinate_map_type=CoordinateMapType.CUDA
                    if coordinates.is_cuda else CoordinateMapType.CPU,
                    allocator_type=allocator_type,
                    minkowski_algorithm=minkowski_algorithm,
                )
        self._manager = coordinate_manager

        ##########################
        # Initialize coords
        ##########################
        # Coordinate Management
        if coordinates is not None:
            assert (
                features.shape[0] == coordinates.shape[0]
            ), "The number of rows in features and coordinates must match."

            assert (features.is_cuda == coordinates.is_cuda
                    ), "Features and coordinates must have the same backend."

            coordinate_field_map_key = CoordinateMapKey(
                convert_to_int_list(tensor_stride, self._D), "")
            coordinate_field_map_key = self._manager.insert_field(
                coordinates.float(),
                convert_to_int_list(tensor_stride, self._D), "")
        else:
            assert (coordinate_field_map_key.is_key_set()
                    ), "The coordinate field map key must be valid."

        if requires_grad is not None:
            features.requires_grad_(requires_grad)

        self._F = features
        self._C = coordinates
        self.coordinate_field_map_key = coordinate_field_map_key
        self._batch_rows = None
        self._inverse_mapping = {}
Exemplo n.º 3
0
    def __init__(
        self,
        features: torch.Tensor,
        coordinates: torch.Tensor = None,
        # optional coordinate related arguments
        tensor_stride: StrideType = 1,
        coordinate_map_key: CoordinateMapKey = None,
        coordinate_manager: CoordinateManager = None,
        quantization_mode:
        SparseTensorQuantizationMode = SparseTensorQuantizationMode.
        RANDOM_SUBSAMPLE,
        # optional manager related arguments
        allocator_type: GPUMemoryAllocatorType = None,
        minkowski_algorithm: MinkowskiAlgorithm = None,
        device=None,
    ):
        r"""

        Args:
            :attr:`features` (:attr:`torch.FloatTensor`,
            :attr:`torch.DoubleTensor`, :attr:`torch.cuda.FloatTensor`, or
            :attr:`torch.cuda.DoubleTensor`): The features of a sparse
            tensor.

            :attr:`coordinates` (:attr:`torch.IntTensor`): The coordinates
            associated to the features. If not provided, :attr:`coordinate_map_key`
            must be provided.

            :attr:`coordinate_map_key`
            (:attr:`MinkowskiEngine.CoordinateMapKey`): When the coordinates
            are already cached in the MinkowskiEngine, we could reuse the same
            coordinate map by simply providing the coordinate map key. In most
            case, this process is done automatically. When you provide a
            `coordinate_map_key`, `coordinates` will be be ignored.

            :attr:`coordinate_manager`
            (:attr:`MinkowskiEngine.CoordinateManager`): The MinkowskiEngine
            manages all coordinate maps using the `_C.CoordinateMapManager`. If
            not provided, the MinkowskiEngine will create a new computation
            graph. In most cases, this process is handled automatically and you
            do not need to use this.

            :attr:`quantization_mode`
            (:attr:`MinkowskiEngine.SparseTensorQuantizationMode`): Defines how
            continuous coordinates will be quantized to define a sparse tensor.
            Please refer to :attr:`SparseTensorQuantizationMode` for details.

            :attr:`tensor_stride` (:attr:`int`, :attr:`list`,
            :attr:`numpy.array`, or :attr:`tensor.Tensor`): The tensor stride
            of the current sparse tensor. By default, it is 1.

        """
        # Type checks
        assert isinstance(features,
                          torch.Tensor), "Features must be a torch.Tensor"
        assert (
            features.ndim == 2
        ), f"The feature should be a matrix, The input feature is an order-{features.ndim} tensor."
        assert isinstance(quantization_mode, SparseTensorQuantizationMode)
        self.quantization_mode = quantization_mode

        if coordinates is not None:
            assert isinstance(coordinates, torch.Tensor)
        if coordinate_map_key is not None:
            assert isinstance(coordinate_map_key, CoordinateMapKey)
        if coordinate_manager is not None:
            assert isinstance(coordinate_manager, CoordinateManager)

        # To device
        if device is not None:
            features = features.to(device)
            coordinates = coordinates.to(device)

        # Coordinate Management
        self._D = 0  # coordinate size - 1
        if coordinates is None and (coordinate_map_key is None
                                    or coordinate_manager is None):
            raise ValueError(
                "Either coordinates or (coordinate_map_key, coordinate_manager) pair must be provided."
            )
        elif coordinates is not None:
            assert (
                features.shape[0] == coordinates.shape[0]
            ), "The number of rows in features and coordinates must match."

            assert (features.is_cuda == coordinates.is_cuda
                    ), "Features and coordinates must have the same backend."

            self._D = coordinates.size(1) - 1

            coordinate_map_key = CoordinateMapKey(
                convert_to_int_list(tensor_stride, self._D), "")
        else:
            # not (coordinate_map_key is None or coordinate_manager is None)
            self._D = coordinate_manager.D

        ##########################
        # Setup CoordsManager
        ##########################
        if coordinate_manager is None:
            # If set to share the coords man, use the global coords man
            global _sparse_tensor_operation_mode, _global_coordinate_manager
            if (_sparse_tensor_operation_mode ==
                    SparseTensorOperationMode.SHARE_COORDINATE_MANAGER):
                if _global_coordinate_manager is None:
                    _global_coordinate_manager = CoordinateManager(
                        D=self._D,
                        coordinate_map_type=CoordinateMapType.CUDA
                        if coordinates.is_cuda else CoordinateMapType.CPU,
                        allocator_type=allocator_type,
                        minkowski_algorithm=minkowski_algorithm,
                    )
                coordinate_manager = _global_coordinate_manager
            else:
                coordinate_manager = CoordinateManager(
                    D=coordinates.size(1) - 1,
                    coordinate_map_type=CoordinateMapType.CUDA
                    if coordinates.is_cuda else CoordinateMapType.CPU,
                    allocator_type=allocator_type,
                    minkowski_algorithm=minkowski_algorithm,
                )
        self._manager = coordinate_manager

        ##########################
        # Initialize coords
        ##########################
        if coordinates is not None:
            coordinates, features, coordinate_map_key = self.initialize_coordinates(
                coordinates, features, coordinate_map_key)

        elif coordinate_map_key is not None:
            assert (coordinate_map_key.is_key_set()
                    ), "The coordinate key must be a valid key."
            self.coordinate_map_key = coordinate_map_key

        self._F = features
        self._C = coordinates
        self._batch_rows = None