Exemplo n.º 1
0
import torch
import sys
# sys.path.append("..")

from NNTrain import trainModels
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# ====================================

if __name__ == '__main__':

    trainModels(data_directory='./datasets/',
                dataset_name='debug',
                input_dim=3,
                class_no=2,
                repeat=1,
                train_batchsize=4,
                validate_batchsize=1,
                num_epochs=10,
                learning_rate=1e-2,
                width=32,
                network='unet',
                augmentation='all_flip',
                reverse=False)
Exemplo n.º 2
0
    # 8. augmentation. parameter to choose different data augmentation. We have options: 'full', 'flip',
    # 'all_filp', 'gaussian' or 'none'.
    # 9. The results will be genereted in a new folder called Results.

    # trainModels(data_directory='./datasets/',
    #             dataset_name='multiclass',
    #             input_dim=4,
    #             class_no=4,
    #             repeat=1,
    #             train_batchsize=4,
    #             validate_batchsize=1,
    #             num_epochs=1,
    #             learning_rate=1e-3,
    #             width=64,
    #             network='unet',
    #             augmentation='full'
    #             )

    trainModels(data_directory='/cluster/project2/Neuroblastoma/',
                dataset_name='data',
                input_dim=3,
                class_no=2,
                repeat=1,
                train_batchsize=2,
                validate_batchsize=1,
                num_epochs=100,
                learning_rate=1e-3,
                width=32,
                network='unet',
                augmentation='full')
import torch
import sys
sys.path.append("..")
from NNTrain import trainModels
# torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

if __name__ == '__main__':

    trainModels(data_directory='/SAN/medic/PerceptronHead/data/brain/BRATS2018/',
                dataset_name='ET_L0_H50',
                input_dim=4,
                class_no=2,
                repeat=1,
                train_batchsize=4,
                validate_batchsize=1,
                num_epochs=100,
                learning_rate=1e-2,
                width=32,
                network='erf_fp_decoder',
                dilation=12,
                augmentation='all_flip',
                reverse=False)