Exemplo n.º 1
0
    def test(epoch):
        global best_acc
        correct = 0
        total = 0
        with torch.no_grad():
            for batch_idx, (inputs, targets) in enumerate(testloader):
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = net.forward(inputs)
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()

                progress_bar(
                    batch_idx, len(testloader), 'Acc: %.3f%% (%d/%d)' %
                    (100. * correct / total, correct, total))
        return str(100. * correct / total)
Exemplo n.º 2
0
    def train(epoch):
        print('\nEpoch: %d' % epoch)
        train_loss = 0
        correct = 0
        total = 0
        for batch_idx, (inputs, targets) in enumerate(trainloader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = net.forward(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            progress_bar(
                batch_idx, len(trainloader),
                'Loss: %.3f | Acc: %.3f%% (%d/%d)' %
                (train_loss /
                 (batch_idx + 1), 100. * correct / total, correct, total))