Exemplo n.º 1
0
        shuffle=True,
        num_workers=int(Config.data_worker),
        collate_fn=lib.dataset.alignCollate(imgH=Config.img_height,
                                            imgW=Config.img_width))

    n_class = len(Config.alphabet) + 1  # for python3
    # n_class = len(Config.alphabet.decode('utf-8')) + 1  # for python2
    print("alphabet class num is %s" % n_class)

    converter = lib.convert.strLabelConverter(Config.alphabet)
    # converter = lib.convert.StrConverter(Config.alphabet)
    # print(converter.dict)

    criterion = CTCLoss()

    net = Net.CRNN(n_class)
    print(net)

    net.apply(lib.utility.weights_init)

    # 加载权重
    net.load_state_dict(torch.load('w160_bs64_model/netCRNN_199_200.pth'))

    image = torch.FloatTensor(Config.batch_size, 3, Config.img_height,
                              Config.img_width)
    text = torch.IntTensor(Config.batch_size * 5)
    length = torch.IntTensor(Config.batch_size)

    if cuda:
        net.cuda()
        image = image.cuda()
Exemplo n.º 2
0
        _, preds = preds.max(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)

        preds_size = Variable(torch.IntTensor([preds.size(0)]))

        # 预测输出,解码成文字
        sim_pred = converter.decode(preds.data, preds_size.data, raw=False)
        result += (format(sim_pred) + '\n')

    return result


if __name__ == '__main__':

    model = Net.CRNN(nclass)
    if running_mode == 'gpu' and torch.cuda.is_available():
        model = model.cuda()
        model.load_state_dict(torch.load(crnn_model_path))
    else:
        model.load_state_dict(torch.load(crnn_model_path, map_location='cpu'))

    print('loading pretrained model from {0}'.format(crnn_model_path))

    files = sorted(os.listdir(IMG_ROOT))
    for file in files:
        started = time.time()
        full_path = os.path.join(IMG_ROOT, file)
        print("=============================================")
        print("ocr image is %s" % full_path)
        image = Image.open(full_path)