def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__() self.explore_noise = 0.1 # standard deviation of explore noise self.policy_noise = 0.2 # standard deviation of policy noise self.update_freq = 2 # delay update frequency, for soft target update self.act = Actor(net_dim, state_dim, action_dim).to(self.device) self.act_target = Actor(net_dim, state_dim, action_dim).to(self.device) self.act_target.load_state_dict(self.act.state_dict()) self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device) self.cri_target = Critic(net_dim, state_dim, action_dim).to(self.device) self.cri_target.load_state_dict(self.cri.state_dict()) self.criterion = nn.MSELoss() self.optimizer = torch.optim.Adam([ { 'params': self.act.parameters(), 'lr': learning_rate }, { 'params': self.cri.parameters(), 'lr': learning_rate }, ], lr=learning_rate)
def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__() self.target_entropy = np.log(action_dim) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e, ), requires_grad=True, dtype=torch.float32, device=self.device) self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target.load_state_dict(self.act.state_dict()) self.cri = CriticTwin( net_dim, state_dim, action_dim, ).to(self.device) self.cri_target = CriticTwin( net_dim, state_dim, action_dim, ).to(self.device) self.cri_target.load_state_dict(self.cri.state_dict()) self.criterion = nn.SmoothL1Loss() self.optimizer = torch.optim.Adam([ { 'params': self.act.parameters(), 'lr': learning_rate }, { 'params': self.cri.parameters(), 'lr': learning_rate }, { 'params': (self.alpha_log, ), 'lr': learning_rate }, ], lr=learning_rate)
class AgentTD3(AgentDDPG): def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__(net_dim, state_dim, action_dim, learning_rate) self.explore_noise = 0.1 # standard deviation of explore noise self.policy_noise = 0.2 # standard deviation of policy noise self.update_freq = 2 # delay update frequency, for soft target update self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device) self.cri_target = CriticTwin(net_dim, state_dim, action_dim).to(self.device) self.cri_target.load_state_dict(self.cri.state_dict()) self.optimizer = torch.optim.Adam([{ 'params': self.act.parameters(), 'lr': learning_rate }, { 'params': self.cri.parameters(), 'lr': learning_rate }]) def update_policy(self, buffer, max_step, batch_size, repeat_times): buffer.update__now_len__before_sample() critic_obj = actor_obj = None for i in range(int(max_step * repeat_times)): with torch.no_grad(): reward, mask, state, action, next_s = buffer.random_sample( batch_size) next_a = self.act_target.get_action( next_s, self.policy_noise) # policy noise next_q = torch.min(*self.cri_target.get__q1_q2( next_s, next_a)) # twin critics q_label = reward + mask * next_q q1, q2 = self.cri.get__q1_q2(state, action) critic_obj = self.criterion(q1, q_label) + self.criterion( q2, q_label) # twin critics q_value_pg = self.act(state) # policy gradient actor_obj = -self.cri_target(state, q_value_pg).mean() united_obj = actor_obj + critic_obj # objective self.optimizer.zero_grad() united_obj.backward() self.optimizer.step() if i % self.update_freq == 0: # delay update soft_target_update(self.cri_target, self.cri) soft_target_update(self.act_target, self.act) self.obj_a = actor_obj.item() self.obj_c = critic_obj.item()
class AgentSAC(AgentBase): def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__() self.target_entropy = np.log(action_dim) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e, ), requires_grad=True, dtype=torch.float32, device=self.device) self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target.load_state_dict(self.act.state_dict()) self.cri = CriticTwin( net_dim, state_dim, action_dim, ).to(self.device) self.cri_target = CriticTwin( net_dim, state_dim, action_dim, ).to(self.device) self.cri_target.load_state_dict(self.cri.state_dict()) self.criterion = nn.MSELoss() self.optimizer = torch.optim.Adam([{ 'params': self.act.parameters(), 'lr': learning_rate }, { 'params': self.cri.parameters(), 'lr': learning_rate }, { 'params': (self.alpha_log, ), 'lr': learning_rate }]) def select_actions(self, states): # states = (state, ...) states = torch.as_tensor(states, dtype=torch.float32, device=self.device) actions = self.act.get_action(states) return actions.detach().cpu().numpy() def update_policy(self, buffer, max_step, batch_size, repeat_times): buffer.update__now_len__before_sample() alpha = self.alpha_log.exp().detach() actor_obj = critic_obj = None for _ in range(int(max_step * repeat_times)): with torch.no_grad(): reward, mask, state, action, next_s = buffer.random_sample( batch_size) next_action, next_log_prob = self.act_target.get__action__log_prob( next_s) next_q = torch.min( *self.cri_target.get__q1_q2(next_s, next_action)) q_label = reward + mask * (next_q + next_log_prob * alpha) q1, q2 = self.cri.get__q1_q2(state, action) critic_obj = self.criterion(q1, q_label) + self.criterion( q2, q_label) a_noise_pg, log_prob = self.act.get__action__log_prob( state) # policy gradient alpha_obj = (self.alpha_log * (log_prob - self.target_entropy).detach()).mean() with torch.no_grad(): self.alpha_log[:] = self.alpha_log.clamp(-16, 2) alpha = self.alpha_log.exp().detach() actor_obj = -( torch.min(*self.cri_target.get__q1_q2(state, a_noise_pg)) + log_prob * alpha).mean() self.obj_a = 0.995 * self.obj_a + 0.005 * q_label.mean().item() united_obj = critic_obj + alpha_obj + actor_obj self.optimizer.zero_grad() united_obj.backward() self.optimizer.step() soft_target_update(self.cri_target, self.cri) soft_target_update(self.act_target, self.act) self.obj_a = actor_obj.item() self.obj_c = critic_obj.item()
class AgentModSAC(AgentBase): def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__() self.target_entropy = np.log(action_dim) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e, ), requires_grad=True, dtype=torch.float32, device=self.device) self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target.load_state_dict(self.act.state_dict()) self.cri = CriticTwin( net_dim, state_dim, action_dim, ).to(self.device) self.cri_target = CriticTwin( net_dim, state_dim, action_dim, ).to(self.device) self.cri_target.load_state_dict(self.cri.state_dict()) self.criterion = nn.SmoothL1Loss() self.optimizer = torch.optim.Adam([ { 'params': self.act.parameters(), 'lr': learning_rate }, { 'params': self.cri.parameters(), 'lr': learning_rate }, { 'params': (self.alpha_log, ), 'lr': learning_rate }, ], lr=learning_rate) def select_actions(self, states): states = torch.as_tensor(states, dtype=torch.float32, device=self.device) actions = self.act.get_action(states) return actions.detach().cpu().numpy() def update_policy(self, buffer, max_step, batch_size, repeat_times): buffer.update__now_len__before_sample() k = 1.0 + buffer.now_len / buffer.max_len batch_size_ = int(batch_size * k) train_steps = int(max_step * k * repeat_times) alpha = self.alpha_log.exp().detach() update_a = 0 for update_c in range(1, train_steps): with torch.no_grad(): reward, mask, state, action, next_s = buffer.random_sample( batch_size_) next_action, next_log_prob = self.act_target.get__action__log_prob( next_s) # print(';', next_s.shape, next_action.shape, next_log_prob.shape) q_label = reward + mask * (torch.min( *self.cri_target.get__q1_q2(next_s, next_action)) + next_log_prob * alpha) q1, q2 = self.cri.get__q1_q2(state, action) cri_obj = self.criterion(q1, q_label) + self.criterion(q2, q_label) self.obj_c = 0.995 * self.obj_c + 0.0025 * cri_obj.item() a_noise_pg, log_prob = self.act.get__action__log_prob( state) # policy gradient alpha_obj = (self.alpha_log * (log_prob - self.target_entropy).detach()).mean() with torch.no_grad(): self.alpha_log[:] = self.alpha_log.clamp(-16, 2) lamb = np.exp(-self.obj_c**2) if_update_a = update_a / update_c < 1 / (2 - lamb) if if_update_a: # auto TTUR update_a += 1 alpha = self.alpha_log.exp().detach() act_obj = -( torch.min(*self.cri_target.get__q1_q2(state, a_noise_pg)) + log_prob * alpha).mean() self.obj_a = 0.995 * self.obj_a + 0.005 * q_label.mean().item() united_obj = cri_obj + alpha_obj + act_obj else: united_obj = cri_obj + alpha_obj self.optimizer.zero_grad() united_obj.backward() self.optimizer.step() soft_target_update(self.cri_target, self.cri) soft_target_update(self.act_target, self.act) if if_update_a else None