Exemplo n.º 1
0
    layers = []
    relu = NN_activators.ReLUActivator()
    layers.append(NN_Layer.Layer(n_inputs, n_hidden1, activator=relu))
    layers.append(NN_Layer.Layer(n_hidden1, n_hidden2, activator=relu))
    layers.append(NN_Layer.Layer(n_hidden2, n_outputs))
    return layers


# end

housing = fetch_california_housing()
X = housing.data
y = housing.target.reshape(-1, 1)

X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    test_size=0.5,
                                                    random_state=0)

X_train = process_features(X_train)
X_test = process_features(X_test)

layers = create_layers()
loss = NN_Loss.SquaredLoss()  # 回归问题,损失函数定义为平方损失函数

model = NeuralNetwork(layers, loss)
model.fit(X_train, y_train, 100000, 0.01)
y_pred = model.predict(X_test)

print("r2_score: {}.".format(r2_score(y_test, y_pred)))
Exemplo n.º 2
0
    n_features = 28 * 28  # 与手写图片尺寸相对应
    n_hidden1 = 300  # 定义包含输出层在内的三个层
    n_hidden2 = 100
    n_classes = 10  # 数字分类问题,最后一层是 10个输出
    layers = []
    relu = NN_activators.ReLUActivator()
    layers.append(NN_Layer.Layer(n_features, n_hidden1, activator=relu))
    layers.append(NN_Layer.Layer(n_hidden1, n_hidden2, activator=relu))
    layers.append(NN_Layer.Layer(n_hidden2, n_classes))
    return layers


# end

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
X_train, Y_train = mnist.train.images, mnist.train.labels
X_test, Y_test = mnist.test.images, mnist.test.labels

layers = create_layers()
loss = NN_Loss.LogarithmicLoss()

model = NeuralNetwork(layers, loss)
model.fit(X_train, Y_train, 50000, 0.01)
V = model.predict(X_test)  # 注意:输出的是与 OneHot向量同维度的一个矩阵(一个测试点对应一个 OneHot向量)

PROBA = NN_Loss.softmax(V)  # 得到 softmax矩阵
y_pred = np.argmax(PROBA, axis=1)

accuracy = accuracy_score(np.argmax(Y_test, axis=1), y_pred)
print("accuracy: {}.".format(accuracy))
Exemplo n.º 3
0
    layers.append(NN_Layer.Layer(n_hidden1, n_hidden2, activator=relu))
    layers.append(NN_Layer.Layer(n_hidden2, n_hidden3, activator=relu))
    layers.append(NN_Layer.Layer(n_hidden3, n_classes, activator=ide))
    return layers
# end



X, y = get_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

encoder = MinMaxScaler()
X_train = encoder.fit_transform(X_train)
X_test = encoder.fit_transform(X_test)

encoder = OneHotEncoder()
Y_train = encoder.fit_transform(y_train)                # 仅将训练数据集的标签转换成 OneHot向量构成的矩阵

layers = create_layers()
loss = NN_Loss.LogarithmicLoss()                        # 分类问题,使用对数损失函数(目标函数为交叉熵)

model = NeuralNetwork(layers, loss)
model.fit(X_train, Y_train, 70000, 0.02)
VR = model.predict(X_test)                              # 注意:输出的是与 OneHot向量同维度的一个矩阵(一个测试点对应一个 OneHot向量),可能不符合概率要求

PROBA = NN_Loss.softmax(VR)                             # V(R)矩阵需要经过 Softmax变换,得到 softmax矩阵,符合概率要求
y_pred = np.argmax(PROBA, axis=1)                       # 最大分类函数,取预测概率最大的一个类别作为最终预测结果(一个数值,0 ~ 9)

accuracy = accuracy_score(y_test, y_pred)               # 计算准确率
print("accuracy: {}.".format(accuracy))