Exemplo n.º 1
0
 def test_custom_works_fine(self):
     jde_custom = SelfAdaptiveDifferentialEvolution(D=self.D,
                                                    NP=40,
                                                    nFES=self.nFES,
                                                    nGEN=self.nGEN,
                                                    F=0.5,
                                                    F_l=0.0,
                                                    F_u=2.0,
                                                    Tao1=0.9,
                                                    CR=0.1,
                                                    Tao2=0.45,
                                                    benchmark=MyBenchmark(),
                                                    seed=self.seed)
     jde_customc = SelfAdaptiveDifferentialEvolution(
         D=self.D,
         NP=40,
         nFES=self.nFES,
         nGEN=self.nGEN,
         F=0.5,
         F_l=0.0,
         F_u=2.0,
         Tao1=0.9,
         CR=0.1,
         Tao2=0.45,
         benchmark=MyBenchmark(),
         seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, jde_custom, jde_customc)
Exemplo n.º 2
0
 def test_griewank_works_fine(self):
     jde_griewank = SelfAdaptiveDifferentialEvolution(D=self.D,
                                                      NP=40,
                                                      nFES=self.nFES,
                                                      nGEN=self.nGEN,
                                                      F=0.5,
                                                      F_l=0.0,
                                                      F_u=2.0,
                                                      Tao1=0.9,
                                                      CR=0.1,
                                                      Tao2=0.45,
                                                      benchmark='griewank',
                                                      seed=self.seed)
     jde_griewankc = SelfAdaptiveDifferentialEvolution(D=self.D,
                                                       NP=40,
                                                       nFES=self.nFES,
                                                       nGEN=self.nGEN,
                                                       F=0.5,
                                                       F_l=0.0,
                                                       F_u=2.0,
                                                       Tao1=0.9,
                                                       CR=0.1,
                                                       Tao2=0.45,
                                                       benchmark='griewank',
                                                       seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, jde_griewank, jde_griewankc)
Exemplo n.º 3
0
 def __init__(self, **kwargs):
     r"""Initialize GWO feature selection algorithm.
     """
     super(jDEFSTH, self).__init__()
     self.__jdefsth = SelfAdaptiveDifferentialEvolution(NP=10,
                                                        F=0.5,
                                                        F_l=0.0,
                                                        F_u=2.0,
                                                        Tao1=0.9,
                                                        CR=0.5,
                                                        Tao2=0.45)
Exemplo n.º 4
0
 def test_griewank_works_fine(self):
     jde_griewank = SelfAdaptiveDifferentialEvolution(NP=40,
                                                      F=0.5,
                                                      F_l=0.0,
                                                      F_u=2.0,
                                                      Tao1=0.9,
                                                      CR=0.1,
                                                      Tao2=0.45,
                                                      seed=self.seed)
     jde_griewankc = SelfAdaptiveDifferentialEvolution(NP=40,
                                                       F=0.5,
                                                       F_l=0.0,
                                                       F_u=2.0,
                                                       Tao1=0.9,
                                                       CR=0.1,
                                                       Tao2=0.45,
                                                       seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, jde_griewank, jde_griewankc)
Exemplo n.º 5
0
 def test_custom_works_fine(self):
     jde_custom = SelfAdaptiveDifferentialEvolution(NP=40,
                                                    F=0.5,
                                                    F_l=0.0,
                                                    F_u=2.0,
                                                    Tao1=0.9,
                                                    CR=0.1,
                                                    Tao2=0.45,
                                                    seed=self.seed)
     jde_customc = SelfAdaptiveDifferentialEvolution(NP=40,
                                                     F=0.5,
                                                     F_l=0.0,
                                                     F_u=2.0,
                                                     Tao1=0.9,
                                                     CR=0.1,
                                                     Tao2=0.45,
                                                     seed=self.seed)
     AlgorithmTestCase.test_algorithm_run(self, jde_custom, jde_customc,
                                          MyBenchmark())
Exemplo n.º 6
0
 def test_typeParameters(self):
     d = SelfAdaptiveDifferentialEvolution.typeParameters()
     self.assertTrue(d['F_l'](10))
     self.assertFalse(d['F_l'](-10))
     self.assertFalse(d['F_l'](-0))
     self.assertTrue(d['F_u'](10))
     self.assertFalse(d['F_u'](-10))
     self.assertFalse(d['F_u'](-0))
     self.assertTrue(d['Tao1'](0.32))
     self.assertFalse(d['Tao1'](-1.123))
     self.assertFalse(d['Tao1'](1.123))
     self.assertTrue(d['Tao2'](0.32))
     self.assertFalse(d['Tao2'](-1.123))
     self.assertFalse(d['Tao2'](1.123))
Exemplo n.º 7
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

from NiaPy.algorithms.modified import SelfAdaptiveDifferentialEvolution
from NiaPy.task import StoppingTask
from NiaPy.benchmarks import Griewank

# we will run jDE algorithm for 5 independent runs
algo = SelfAdaptiveDifferentialEvolution(NP=40, F=0.5, F_l=0.0, F_u=2.0, Tao1=0.9, CR=0.5, Tao2=0.45)
for i in range(5):
	task = StoppingTask(D=10, nFES=10000, benchmark=Griewank(Lower=-600, Upper=600), logger=True)
	best = algo.run(task)
	print('%s -> %s' % (best[0], best[1]))
print(algo.getParameters())

# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3

Exemplo n.º 8
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.modified import SelfAdaptiveDifferentialEvolution
from NiaPy.util import StoppingTask, OptimizationType
from NiaPy.benchmarks import Sphere

#we will run jDE algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10, nFES=100, optType=OptimizationType.MINIMIZATION, benchmark=Sphere())
    algo = SelfAdaptiveDifferentialEvolution(NP=40, F=0.5, F_l=0.0, F_u=2.0, Tao1=0.9, CR=0.1, Tao2=0.45)
    best = algo.run(task=task)
    print(best)

Exemplo n.º 9
0
class jDEFSTH(FeatureSelectionAlgorithm):
    r"""Implementation of self-adaptive differential evolution for feature selection using threshold mechanism.

    Date:
        2020
    
    Author:
        Iztok Fister Jr.
    
    Reference:
        D. Fister, I. Fister, T. Jagrič, I. Fister Jr., J. Brest. A novel self-adaptive differential evolution for feature selection using threshold mechanism . In: Proceedings of the 2018 IEEE Symposium on Computational Intelligence (SSCI 2018), pp. 17-24, 2018.
    
    Reference URL: 
        http://iztok-jr-fister.eu/static/publications/236.pdf    

    License:
        MIT

	See Also:
		* :class:`niaaml.preprocessing.feature_selection.feature_selection_algorithm.FeatureSelectionAlgorithm`
    """
    Name = 'Self-Adaptive Differential Evolution'

    def __init__(self, **kwargs):
        r"""Initialize GWO feature selection algorithm.
        """
        super(jDEFSTH, self).__init__()
        self.__jdefsth = SelfAdaptiveDifferentialEvolution(NP=10,
                                                           F=0.5,
                                                           F_l=0.0,
                                                           F_u=2.0,
                                                           Tao1=0.9,
                                                           CR=0.5,
                                                           Tao2=0.45)

    def __final_output(self, sol):
        r"""Calculate final array of features.

        Arguments:
            sol (numpy.ndarray[float]): Individual of population/ possible solution.

        Returns:
            numpy.ndarray[bool]: Mask of selected features.
        """
        selected = numpy.ones(sol.shape[0] - 1, dtype=bool)
        threshold = sol[sol.shape[0] - 1]
        for i in range(sol.shape[0] - 1):
            if sol[i] < threshold:
                selected[i] = False
        return selected

    def select_features(self, x, y, **kwargs):
        r"""Perform the feature selection process.

        Arguments:
            x (pandas.core.frame.DataFrame): Array of original features.
            y (pandas.core.series.Series) Expected classifier results.

        Returns:
            numpy.ndarray[bool]: Mask of selected features.
        """
        num_features = x.shape[1]
        benchmark = _FeatureSelectionThresholdBenchmark(x, y)
        task = StoppingTask(D=num_features + 1, nFES=1000, benchmark=benchmark)
        best = self.__jdefsth.run(task)
        return self.__final_output(benchmark.get_best_solution())

    def to_string(self):
        r"""User friendly representation of the object.

        Returns:
            str: User friendly representation of the object.
        """
        return FeatureSelectionAlgorithm.to_string(self).format(
            name=self.Name,
            args=self._parameters_to_string(self.__jdefsth.getParameters()))