Exemplo n.º 1
0
def result():
    project_id = "598330041668"
    credentials = GoogleCredentials.get_application_default()
    bigquery_service = build('bigquery', 'v2', credentials=credentials)
    # This shopList will change after when we get this data from a database
    shoplist = ['001', '002']
    for name in shoplist:
        dataset_id = 'recommendation_' + name
        data = create(bigquery_service, dataset_id)
        data = normalize(data)
        data = predict(data)
        data = createData(data)
        # value k will change after
        k = 10
        f = open('result.json', 'w')
        check = False
        for user in data.keys():
            tmp = recommend(data, user, k)
            if tmp != []:
                check = True
                for (sku, distance) in tmp:
                    res = '{\'customer_id\': \'' + user + '\', \'sku\': \'' + sku + '\', \'distance\': ' + str(
                        distance) + '}'
                    f.write(res)
                    f.write('\n')
        f.close()
        if check:
            createTable(bigquery_service, dataset_id)
            insertValues(bigquery_service, dataset_id)
Exemplo n.º 2
0
def BCSH1(weight, bits=64, iters=50, lambd=0.1):
    X = weight.transpose()
    X[X > 0] = 1
    X1 = X.copy()
    X0 = 1 - X
    X1 = normalize(X1)
    X0 = normalize(X0)
    [n, m] = X.shape

    B = np.random.randint(0, 2, (bits, m))
    B[B == 0] = -1

    #PB1 = np.zeros((bits,1))
    for i in range(iters):

        tempB1 = B.copy()
        tempB0 = -B
        tempB1[tempB1 < 0] = 0
        tempB0[tempB0 < 0] = 0

        PX1_B1 = (np.dot(tempB1, X.transpose()) + 1) / (m + 2)
        PX1_B0 = (np.dot(tempB0, X.transpose()) + 1) / (m + 2)
        PB1 = np.sum(tempB1, 1, keepdims=True) / m

        PX0_B1 = 1 - PX1_B1
        PX0_B0 = 1 - PX1_B0
        PB0 = 1 - PB1

        logPX1_B1 = np.log2(PX1_B1)
        logPX1_B0 = np.log2(PX1_B0)
        logPX0_B1 = np.log2(PX0_B1)
        logPX0_B0 = np.log2(PX0_B0)

        logPB1 = np.dot(logPX1_B1, X1) + np.dot(logPX0_B1, X0)
        logPB0 = np.dot(logPX1_B0, X1) + np.dot(logPX0_B0, X0)

        tmp = logPB1 - logPB0
        tmp[tmp > 32] = 32
        PXB1 = np.power(2, tmp)
        PXB1 = PXB1 / (1 + PXB1)
        Fx = PXB1 * 2 - 1

        Y = Update(B, bits)

        old_B = B.copy()
        for i in range(bits):
            for j in range(m):
                if ((np.power((1 - Fx[i, j]), 2) + lambd * np.power(
                    (1 - Y[i, j]), 2)) <= (np.power(
                        (-1 - Fx[i, j]), 2) + lambd * np.power(
                            (-1 - Y[i, j]), 2))):
                    B[i, j] = 1
                else:
                    B[i, j] = -1
        updateB = sum(sum(B != old_B))
        print('update-------------------')
        print(updateB)

    scipy.io.savemat(
        './argfile/arg1.mat', {
            'B': B,
            'logPX1_B1': logPX1_B1,
            'logPX1_B0': logPX1_B0,
            'logPX0_B1': logPX0_B1,
            'logPX0_B0': logPX0_B0
        })

    return B
Exemplo n.º 3
0
    # Print it:
    print("Predicted label = {} (confidence={})".format(p_label, p_confidence))
    # Cool! Finally we'll plot the Eigenfaces, because that's
    # what most people read in the papers are keen to see.

    # Just like in C++ you have access to all model internal
    # data, because the cv::FaceRecognizer is a cv::Algorithm.

    # You can see the available parameters with getParams():
    #print( model.getParams())
    # Now let's get some data:
    mean = model.getMean()
    eigenvectors = model.getEigenVectors()

    # We'll save the mean, by first normalizing it:
    mean_norm = normalize(mean, 0, 255, dtype=np.uint8)
    mean_resized = mean_norm.reshape(X[0].shape)

    if out_dir is None:
        cv2.imshow("mean", mean_resized)
    else:
        cv2.imwrite("{}/mean.png".format(out_dir), mean_resized)
    # Turn the first (at most) 16 eigenvectors into grayscale
    # images. You could also use cv::normalize here, but sticking
    # to NumPy is much easier for now.
    # Note: eigenvectors are stored by column:

    for i in range(min(len(X), 16)):
        eigenvector_i = eigenvectors[:, i].reshape(X[0].shape)
        eigenvector_i_norm = normalize(eigenvector_i, 0, 255, dtype=np.uint8)
        # Show or save the images:
def main():
    print("Starting application..\n")
    traffic = normalize(filename_adj)

    print("1 - Display the information gain list")
    print("2 - Display the Chi-squared list")
    print("3 - Display the Recursive Feature Elimination list")
    print("4 - Display the WRFS list")
    selection = input("Enter your selection: ")

    #########################
    #Information Gain list
    #########################
    if (selection == 1):
        #         sorted_gain_list = InfoGain.ig_list(traffic)
        sorted_gain_list = [
            'land', 'urgent', 'wrong_fragment', 'rerror_rate',
            'srv_rerror_rate', 'count', 'dst_host_rerror_rate',
            'dst_host_srv_rerror_rate', 'duration', 'flag', 'serror_rate',
            'srv_serror_rate', 'dst_host_serror_rate',
            'dst_host_srv_serror_rate', 'diff_srv_rate', 'same_srv_rate',
            'dst_host_same_srv_rate', 'srv_diff_host_rate',
            'dst_host_diff_srv_rate', 'dst_host_srv_count',
            'dst_host_srv_diff_host_rate', 'dst_host_count', 'protocol_type',
            'srv_count', 'dst_host_same_src_port_rate', 'dst_bytes', 'service',
            'src_bytes'
        ]
        print("Features selected using Information Gain.")

    #########################
    #Chi-Squared list
    #########################
    elif (selection == 2):
        #         sorted_chi2_list = Chi2.chi2_list()
        sorted_chi2_list = [
            'dst_host_same_srv_rate', 'count', 'rerror_rate',
            'srv_rerror_rate', 'same_srv_rate', 'wrong_fragment',
            'dst_host_rerror_rate', 'diff_srv_rate',
            'dst_host_srv_rerror_rate', 'dst_host_diff_srv_rate',
            'serror_rate', 'srv_serror_rate', 'dst_host_serror_rate',
            'dst_host_srv_serror_rate', 'flag', 'dst_host_same_src_port_rate',
            'protocol_type', 'srv_diff_host_rate',
            'dst_host_srv_diff_host_rate', 'dst_host_srv_count', 'service',
            'land', 'urgent', 'dst_host_count', 'srv_count', 'duration',
            'src_bytes', 'dst_bytes'
        ]
        print("Features selected using Chi-squared.")

    ######################################
    #Recursive Feature Elimination list
    ######################################
    elif (selection == 3):
        sorted_rfe = [
            'diff_srv_rate', 'same_srv_rate', 'dst_host_srv_serror_rate',
            'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate',
            'protocol_type', 'dst_host_serror_rate', 'wrong_fragment',
            'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate',
            'dst_host_same_srv_rate', 'dst_host_srv_rerror_rate',
            'serror_rate', 'flag', 'dst_host_diff_srv_rate', 'count',
            'service', 'dst_host_srv_count', 'srv_count',
            'dst_host_rerror_rate', 'dst_host_count', 'src_bytes',
            'srv_diff_host_rate', 'urgent', 'dst_bytes', 'land', 'duration'
        ]
        print("Features selected using Recursive Feature Elimination.")

    #########################
    #WRFS list
    #########################
    elif (selection == 4):
        sorted_WRFS_list = [
            'dst_bytes', 'src_bytes', 'srv_count', 'dst_host_count', 'service',
            'duration', 'srv_diff_host_rate', 'dst_host_srv_count',
            'dst_host_srv_diff_host_rate', 'dst_host_same_src_port_rate',
            'urgent', 'land', 'protocol_type', 'dst_host_diff_srv_rate',
            'flag', 'serror_rate', 'dst_host_rerror_rate',
            'dst_host_serror_rate', 'dst_host_srv_serror_rate',
            'dst_host_same_srv_rate', 'dst_host_srv_rerror_rate',
            'srv_serror_rate', 'count', 'diff_srv_rate', 'same_srv_rate',
            'wrong_fragment', 'srv_rerror_rate', 'rerror_rate'
        ]
        print("Features selected using WRFS.")

    else:
        print("Invalid selection")

    print("\n")
    print("*****************")
    print("Classification")
    print("*****************")
    print("1 - Naive Bayes ")
    print("2 - SVM")
    print("3 - Decision Tree")
    print("4 - Random Forest")
    clx_selection = input("Enter your selection: ")

    book = xlwt.Workbook(encoding="utf-8")
    sheet1 = book.add_sheet("Sheet 1")
    sheet1.write(0, 2, "Accuracy Values")
    for i in range(4, 5):
        num_features = i
        print("Number of features selected - ", i)

        ################
        #Naive Bayes
        ################
        if (selection == 1 and clx_selection == 1):
            print("Classifying using Naive Bayes...")
            accuracy = Classifiers.NaiveBayes.naive_bayes(
                sorted_gain_list, num_features)
            sheet1.write(i, 2, accuracy)
        elif (selection == 2 and clx_selection == 1):
            print("Classifying using Naive Bayes...")
            accuracy = Classifiers.NaiveBayes.naive_bayes(
                sorted_chi2_list, num_features)
            sheet1.write(i, 5, accuracy)
        elif (selection == 3 and clx_selection == 1):
            print("Classifying using Naive Bayes...")
            accuracy = Classifiers.NaiveBayes.naive_bayes(
                sorted_rfe, num_features)
            sheet1.write(i, 2, accuracy)
        elif (selection == 4 and clx_selection == 1):
            print("Classifying using Naive Bayes...")
            accuracy = Classifiers.NaiveBayes.naive_bayes(
                sorted_WRFS_list, num_features)
            sheet1.write(i, 2, accuracy)

        ################
        #SVM
        ################
        elif (selection == 1 and clx_selection == 2):
            print("Classifying using SVM...")
            accuracy = Classifiers.SVM.svm(sorted_gain_list, num_features)
            sheet1.write(i, 3, accuracy)
        elif (selection == 2 and clx_selection == 2):
            print("Classifying using SVM...")
            accuracy = Classifiers.SVM.svm(sorted_chi2_list, num_features)
            sheet1.write(i, 3, accuracy)
        elif (selection == 3 and clx_selection == 2):
            print("Classifying using SVM...")
            accuracy = Classifiers.SVM.svm(sorted_rfe, num_features)
            sheet1.write(i, 3, accuracy)
        elif (selection == 4 and clx_selection == 2):
            print("Classifying using SVM...")
            accuracy = Classifiers.SVM.svm(sorted_WRFS_list, num_features)
            sheet1.write(i, 3, accuracy)

        ###################
        #Decision Trees
        ###################
        elif (selection == 1 and clx_selection == 3):
            print("Classifying using Decision Trees...")
            accuracy = Classifiers.DecisionTree.decision_tree(
                sorted_gain_list, num_features)
            sheet1.write(i, 3, accuracy)
        elif (selection == 2 and clx_selection == 3):
            print("Classifying using Decision Trees...")
            accuracy = Classifiers.DecisionTree.decision_tree(
                sorted_chi2_list, num_features)
            sheet1.write(i, 3, accuracy)
        elif (selection == 3 and clx_selection == 3):
            print("Classifying using Decision Trees...")
            accuracy = Classifiers.DecisionTree.decision_tree(
                sorted_rfe, num_features)
            sheet1.write(i, 3, accuracy)
        elif (selection == 4 and clx_selection == 3):
            print("Classifying using Decision Trees...")
            accuracy = Classifiers.DecisionTree.decision_tree(
                sorted_WRFS_list, num_features)
            sheet1.write(i, 3, accuracy)

        ################
        #Random Forest
        ################
        elif (selection == 1 and clx_selection == 4):
            print("Classifying using Random Forest...")
            accuracy = Classifiers.RandomForest.randomForest(
                sorted_gain_list, num_features)
            sheet1.write(i, 6, accuracy)
        elif (selection == 2 and clx_selection == 4):
            print("Classifying using Random Forest...")
            accuracy = Classifiers.RandomForest.randomForest(
                sorted_chi2_list, num_features)
            sheet1.write(i, 6, accuracy)
        elif (selection == 3 and clx_selection == 4):
            print("Classifying using Random Forest...")
            accuracy = Classifiers.RandomForest.randomForest(
                sorted_rfe, num_features)
            sheet1.write(i, 6, accuracy)
        elif (selection == 4 and clx_selection == 4):
            print("Classifying using Random Forest...")
            accuracy = Classifiers.RandomForest.randomForest(
                sorted_WRFS_list, num_features)
            sheet1.write(i, 6, accuracy)

        else:
            print("Invalid Selection")
        print("End")

    book.save("results.xls")
def go():
    num_papers = normalize('input', 'output')
    #make_pairs_by_type('output')
    print('complete')
Exemplo n.º 6
0
def DesOpt(SysEq, x0, xU, xL, xDis=[], gc=[], hc=[], SensEq=[], Alg="SLSQP", SensCalc="FD", DesVarNorm=True,
           deltax=1e-3, StatusReport=False, ResultReport=False, Video=False, DoE=False, SBDO=False,
           Debug=False, PrintOut=True, OptNameAdd="", AlgOptions=[], Alarm=True):

#-----------------------------------------------------------------------------------------------------------------------
# Define optimization problem and optimization options
#-----------------------------------------------------------------------------------------------------------------------
    """
    :type OptNode: object
    """
    if Debug is True:
        StatusReport = False
        if StatusReport is True:
            print "Debug is set to True; overriding StatusReport"
        if ResultReport is True:
            print "Debug is set to True; overriding ResultReport"
        ResultReport = False
    computerName = platform.uname()[1]
    operatingSystem = platform.uname()[0]
    architecture = platform.uname()[4]
    nProcessors = str(multiprocessing.cpu_count())
    userName = getpass.getuser()
    OptTime0 = time.time()
    OptNodes = "all"
    MainDir = os.getcwd()
    if operatingSystem  != 'Windows':
        DirSplit = "/"
        homeDir = "/home/"
    else:
        DirSplit = "\\"
        homeDir = "c:\\Users\\"
    OptModel = os.getcwd().split(DirSplit)[-1]
    try:
        OptAlg = eval("pyOpt." + Alg + '()')
        pyOptAlg = True
    except:
        OptAlg = Alg
        pyOptAlg = False
    if hasattr(SensEq, '__call__'):
        SensCalc = "OptSensEq"
        print "Function for sensitivity analysis has been provided, overriding SensCalc to use function"
    else:
        pass
    StartTime = datetime.datetime.now()
    loctime = time.localtime()
    today = time.strftime("%B", time.localtime()) + ' ' + str(loctime[2]) + ', ' + str(loctime[0])
    if SBDO is True:
        OptNameAdd = OptNameAdd + "_SBDO"
    OptName = OptModel + OptNameAdd + "_" + Alg + "_" + StartTime.strftime("%Y%m%d%H%M%S")
    global nEval
    nEval = 0
    LocalRun = True
    ModelDir = os.getcwd()[:-(len(OptModel) + 1)]
    ModelFolder = ModelDir.split(DirSplit)[-1]
    DesOptDir = ModelDir[:-(len(ModelFolder) + 1)]
    ResultsDir = DesOptDir + os.sep + "Results"
    RunDir = DesOptDir + os.sep + "Run"
    try:
        inform
    except NameError:
        inform = ["Running"]
    if LocalRun is True and Debug is False:
        try: os.mkdir(ResultsDir)
        except: pass
        os.mkdir(ResultsDir + DirSplit + OptName)
        os.mkdir(ResultsDir + os.sep + OptName + os.sep + "ResultReport" + os.sep)
        shutil.copytree(os.getcwd(), RunDir + os.sep + OptName)
    #if SensCalc == "ParaFD":
    #    import OptSensParaFD
    #    os.system("cp -r ParaPythonFn " + homeDir + userName + "/DesOptRun/" + OptName)
    if LocalRun is True and Debug is False:
        os.chdir("../../Run/" + OptName + "/")
    sys.path.append(os.getcwd())


#-----------------------------------------------------------------------------------------------------------------------
#       Print start-up splash to output screen
#-----------------------------------------------------------------------------------------------------------------------
    if PrintOut is True:
        print("--------------------------------------------------------------------------------")
        PrintDesOptPy()
        print("")
        print("Optimization model:      " + OptModel)
        try: print("Optimization algorithm:  " + Alg)
        except: pass
        print("Optimization start:      " + StartTime.strftime("%Y%m%d%H%M"))
        print("Optimization name:       " + OptName)
        print("--------------------------------------------------------------------------------")



#-----------------------------------------------------------------------------------------------------------------------
#       Optimization problem
#-----------------------------------------------------------------------------------------------------------------------

#-----------------------------------------------------------------------------------------------------------------------
#       Define functions: system equation, normalization, etc.
#-----------------------------------------------------------------------------------------------------------------------
    def OptSysEq(x):
        x = np.array(x)  # NSGA2 gives a list back, this makes a float! TODO Inquire why it does this!
        f, g = SysEq(x, gc)
        fail = 0
        global nEval
        nEval += 1
        if StatusReport == True:
            OptHis2HTML.OptHis2HTML(OptName, OptAlg, DesOptDir, xL, xU, DesVarNorm, inform[0], OptTime0)
        if len(xDis) > 0:
            nD = len(xDis)
            gDis = [[]]*2*nD
            for ii in range(nD):
                gDis[ii+0] = np.sum(x[-1*xDis[ii]:])-1
                gDis[ii+1] = 1-np.sum(x[-1*xDis[ii]:])
            gNew = np.concatenate((g, gDis), 0)
            g = copy.copy(gNew)
        # TODO add print out for optimization development!!
        return f, g, fail

    def OptSysEqNorm(xNorm):
        xNorm = np.array(xNorm)  # NSGA2 gives a list back, this makes a float! TODO Inquire why it does this!
        x = denormalize(xNorm, xL, xU, DesVarNorm)
        f, g, fail = OptSysEq(x)
        return f, g, fail

    def OptPenSysEq(x):
        f, g, fail = OptSysEq(x)
        fpen = f
        return fpen

    def OptSensEq(x, f, g):
        dfdx, dgdx = SensEq(x, f, g, gc)
        dfdx = dfdx.reshape(1,len(x))
        fail = 0
        return dfdx, dgdx, fail

    def OptSensEqNorm(xNorm, f, g):
        x = denormalize(xNorm, xL, xU, DesVarNorm)
        dfxdx, dgxdx, fail = OptSensEq(x, f, g)
        dfdx = dfxdx * (xU - xL)
        # TODO not general for all normalizations! needs to be rewritten
        if dgxdx != []:
            dgdx = dgxdx * np.tile((xU - xL), [len(g), 1])
            # TODO not general for all normalizations! needs to be rewritten
        else:
            dgdx = []
        return dfdx, dgdx, fail

    def OptSensEqParaFD(x, f, g):
        global nEval
        dfdx, dgdx, nb = OptSensParaFD.Para(x, f, g, deltax, OptName, OptNodes)
        nEval += nb
        fail = 0
        return dfdx, dgdx, fail

    def OptSensEqParaFDNorm(xNorm, f, g):
        x = denormalize(xNorm, xL, xU, DesVarNorm)
        dfxdx, dgxdx, fail = OptSensEqParaFD(x, f, g)
        dfdx = dfxdx * (xU - xL)
        # TODO not general for all normalizations! needs to be rewritten
        dgdx = dgxdx * (np.tile((xU - xL), [len(g), 1]))
        # TODO not general for all normalizations! needs to be rewritten
        return dfdx, dgdx, fail

#-----------------------------------------------------------------------------------------------------------------------
#       Surrogate-based optimization (not fully functioning yet!!!!)
#-----------------------------------------------------------------------------------------------------------------------
    # TODO SBDO in a separate file???
    if SBDO is not False:
        if DoE > 0:
            import pyDOE
            try:
                n_gc = len(gc)
            except:
                n_gc = 1
            SampleCorners = True
            if SampleCorners is True:
                xTemp = np.ones(np.size(xL)) * 2
                xSampFF = pyDOE.fullfact(np.array(xTemp, dtype=int))  # Kriging needs boundaries too!!
                xSampLH = pyDOE.lhs(np.size(xL), DoE)
                xDoE_Norm = np.concatenate((xSampFF, xSampLH), axis=0)
            else:
                xDoE_Norm = pyDOE.lhs(np.size(xL), DoE)
            xDoE = np.zeros(np.shape(xDoE_Norm))
            fDoE = np.zeros([np.size(xDoE_Norm, 0), 1])
            gDoE = np.zeros([np.size(xDoE_Norm, 0), n_gc])
            for ii in range(np.size(xDoE_Norm, 0)):
                xDoE[ii] = denormalize(xDoE_Norm[ii], xL, xU, DesVarNorm)
                fDoEii, gDoEii, fail = OptSysEqNorm(xDoE_Norm[ii])
                fDoE[ii] = fDoEii
                gDoE[ii, :] = gDoEii
            n_theta = np.size(x0) + 1
            ApproxObj = "QuadReg"
            ApproxObj = "GaussianProcess"
            if ApproxObj == "GaussianProcess":
                from sklearn.gaussian_process import GaussianProcess

                approx_f = GaussianProcess(regr='quadratic', corr='squared_exponential',
                                           normalize=True, theta0=0.1, thetaL=1e-4, thetaU=1e+1,
                                           optimizer='fmin_cobyla')
            elif ApproxObj == "QuadReg":
                #                from PolyReg import *
                approx_f = PolyReg()
            approx_f.fit(xDoE, fDoE)
            from sklearn.gaussian_process import GaussianProcess

            gDoEr = np.zeros(np.size(xDoE_Norm, 0))
            approx_g = [[]] * n_gc
            gpRegr = ["quadratic"] * n_gc
            gpCorr = ["squared_exponential"] * n_gc
            for ii in range(n_gc):
                for iii in range(np.size(xDoE_Norm, 0)):
                    gDoEii = gDoE[iii]
                    gDoEr[iii] = gDoEii[ii]
                approx_g[ii] = GaussianProcess(regr=gpRegr[ii], corr=gpCorr[ii], theta0=0.01,
                                               thetaL=0.0001, thetaU=10., optimizer='fmin_cobyla')
                approx_g[ii].fit(xDoE, gDoEr)
            DoE_Data = {}
            DoE_Data['xDoE_Norm'] = xDoE_Norm
            DoE_Data['gDoE'] = gDoE
            DoE_Data['fDoE'] = fDoE
            output = open(OptName + "_DoE.pkl", 'wb')
            pickle.dump(DoE_Data, output)
            output.close()
        else:
            Data = pickle.load(open("Approx.pkl"))
            approx_f = Data["approx_f"]
            approx_g = Data["approx_g"]

    def ApproxOptSysEq(x):
        f = approx_f.predict(x)
        g = np.zeros(len(gc))
        for ii in range(len(gc)):
            # exec("g[ii], MSE = gp_g"+str(ii)+".predict(x, eval_MSE=True)")
            g[ii] = approx_g[ii].predict(x)
        # sigma = np.sqrt(MSE)
        fail = 0
        return f, g, fail

    def ApproxOptSysEqNorm(xNorm):
        xNorm = xNorm[0:np.size(xL), ]
        x = denormalize(xNorm, xL, xU, DesVarNorm)
        f = approx_f.predict(x)
        g = np.zeros(len(gc))
        for ii in range(len(gc)):
            # exec("g[ii], MSE = gp_g"+str(ii)+".predict(x, eval_MSE=True)")
            g[ii] = approx_g[ii].predict(x)
        # sigma = np.sqrt(MSE)
        fail = 0
        return f, g, fail
    if xDis is not []:
        for ii in range(np.size(xDis, 0)):
            xExpand0 = np.ones(xDis[ii]) * 1./xDis[ii]   # Start at uniform of all materials etc.
            xNew0 = np.concatenate((x0, xExpand0), 0)
            xExpandL = np.ones(xDis[ii]) * 0.0001
            xNewL = np.concatenate((xL, xExpandL), 0)
            xExpandU = np.ones(xDis[ii])
            xNewU = np.concatenate((xU, xExpandU), 0)
            x0 = copy.copy(xNew0)
            xL = copy.copy(xNewL)
            xU = copy.copy(xNewU)
            gcNew = np.concatenate((gc, np.ones(2,)), 0)
            gc = copy.copy(gcNew)
    if DesVarNorm in ["None", None, False]:
        x0norm = x0
        xLnorm = xL
        xUnorm = xU
        DefOptSysEq = OptSysEq
    else:
        [x0norm, xLnorm, xUnorm] = normalize(x0, xL, xU, DesVarNorm)
        DefOptSysEq = OptSysEqNorm
    nx = np.size(x0)
    ng = np.size(gc)

#-----------------------------------------------------------------------------------------------------------------------
#       pyOpt optimization
#-----------------------------------------------------------------------------------------------------------------------
    if pyOptAlg is True:
        if SBDO is not False and DesVarNorm  in ["xLxU", True, "xLx0", "x0", "xU"]: #in ["None", None, False]:
            OptProb = pyOpt.Optimization(OptModel, ApproxOptSysEqNorm, obj_set=None)
        elif SBDO is not False and DesVarNorm in ["None", None, False]:
            OptProb = pyOpt.Optimization(OptModel, ApproxOptSysEq, obj_set=None)
        else:
            OptProb = pyOpt.Optimization(OptModel, DefOptSysEq)
        if np.size(x0) == 1:
            OptProb.addVar('x', 'c', value=x0norm, lower=xLnorm, upper=xUnorm)
        elif np.size(x0) > 1:
            for ii in range(np.size(x0)):
                OptProb.addVar('x' + str(ii + 1), 'c', value=x0norm[ii], lower=xLnorm[ii], upper=xUnorm[ii])
        OptProb.addObj('f')
        if np.size(gc) == 1:
            OptProb.addCon('g', 'i')
            ng = 1
        elif np.size(gc) > 1:
            for ii in range(len(gc)):
                OptProb.addCon('g' + str(ii + 1), 'i')
            ng = ii + 1
        if np.size(hc) == 1:
            OptProb.addCon('h', 'i')
        elif np.size(hc) > 1:
            for ii in range(ng):
                OptProb.addCon('h' + str(ii + 1), 'i')
        if AlgOptions == []:
            AlgOptions = OptAlgOptions.setDefault(Alg)
        OptAlg = OptAlgOptions.setUserOptions(AlgOptions, Alg, OptName, OptAlg)
        #if AlgOptions == []:
        #    OptAlg = OptAlgOptions.setDefaultOptions(Alg, OptName, OptAlg)
        #else:
        #    OptAlg = OptAlgOptions.setUserOptions(AlgOptions, Alg, OptName, OptAlg)
        if PrintOut is True:
            print(OptProb)
        if Alg in ["MMA", "FFSQP", "FSQP", "GCMMA", "CONMIN", "SLSQP", "PSQP", "KSOPT", "ALGENCAN", "NLPQLP", "IPOPT"]:
            if SensCalc == "OptSensEq":
                if DesVarNorm  not in ["None", None, False]:
                    [fOpt, xOpt, inform] = OptAlg(OptProb, sens_type=OptSensEqNorm, store_hst=OptName)
                else:
                    [fOpt, xOpt, inform] = OptAlg(OptProb, sens_type=OptSensEq, store_hst=OptName)
            elif SensCalc == "ParaFD":  # Michi Richter
                if DesVarNorm  not in ["None", None, False]:
                    [fOpt, xOpt, inform] = OptAlg(OptProb, sens_type=OptSensEqParaFDNorm, store_hst=OptName)
                else:
                    [fOpt, xOpt, inform] = OptAlg(OptProb, sens_type=OptSensEqParaFD, store_hst=OptName)
            else:  # Here FD (finite differencing)
                [fOpt, xOpt, inform] = OptAlg(OptProb, sens_type=SensCalc, sens_step=deltax, store_hst=OptName)

        elif Alg in ["SDPEN", "SOLVOPT"]:
            [fOpt, xOpt, inform] = OptAlg(OptProb)
        else:
            [fOpt, xOpt, inform] = OptAlg(OptProb, store_hst=OptName)
        if PrintOut is True:
            try: print(OptProb.solution(0))
            except: pass
        if Alg not in ["PSQP", "SOLVOPT", "MIDACO", "SDPEN", "ralg"] and PrintOut is True:
            print(OptAlg.getInform(0))

#-----------------------------------------------------------------------------------------------------------------------
#       OpenOpt optimization -- not fully implemented in this framework and not yet working...
#-----------------------------------------------------------------------------------------------------------------------
    elif Alg == "ralg":
        from openopt import NLP
        f, g = lambda x: OptSysEq(x)
        # g = lambda x: OptSysEq(x)[1][0]
        p = NLP(f, x0, c=g, lb=xL, ub=xU, iprint=50, maxIter=10000, maxFunEvals=1e7, name='NLP_1')
        r = p.solve(Alg, plot=0)
        print(OptAlg.getInform(1))

#-----------------------------------------------------------------------------------------------------------------------
#       pyCMAES
#-----------------------------------------------------------------------------------------------------------------------
    elif Alg == "pycmaes":
        print "CMA-ES == not fully implemented in this framework"
        print "    no constraints"
        import cma
        def CMA_ES_ObjFn(x):
            f, g, fail = OptSysEq(x)
            return f
        OptRes = cma.fmin(CMA_ES_ObjFn, x0, sigma0=1)
        xOpt = OptRes[0]
        fOpt = OptRes[1]
        nEval = OptRes[4]
        nIter = OptRes[5]
#-----------------------------------------------------------------------------------------------------------------------
#       MATLAB fmincon optimization -- not fully implemented in this framework and not yet working...
#-----------------------------------------------------------------------------------------------------------------------
    elif Alg == "fmincon":  # not fully implemented in this framework
        def ObjFn(x):
            f, g, fail = OptSysEqNorm(xNorm)
            return f, []
        from mlabwrap import mlab
        mlab._get(ObjFn)
        mlab.fmincon(mlab._get("ObjFn"), x)      # g,h, dgdx = mlab.fmincon(x.T,cg,ch, nout=3)

#-----------------------------------------------------------------------------------------------------------------------
#       PyGMO optimization
#-----------------------------------------------------------------------------------------------------------------------
    elif Alg[:5] == "PyGMO":
        DesVarNorm = "None"
        #print nindiv
        dim = np.size(x0)
        # prob = OptSysEqPyGMO(dim=dim)
        prob = OptSysEqPyGMO(SysEq=SysEq, xL=xL, xU=xU, gc=gc, dim=dim, OptName=OptName, Alg=Alg, DesOptDir=DesOptDir,
                             DesVarNorm=DesVarNorm, StatusReport=StatusReport, inform=inform, OptTime0=OptTime0)
        # prob = problem.death_penalty(prob_old, problem.death_penalty.method.KURI)
        if AlgOptions == []:
            AlgOptions = OptAlgOptions.setDefault(Alg)
        OptAlg = OptAlgOptions.setUserOptions(AlgOptions, Alg, OptName, OptAlg)
        #algo = eval("PyGMO.algorithm." + Alg[6:]+"()")

        #de (gen=100, f=0.8, cr=0.9, variant=2, ftol=1e-06, xtol=1e-06, screen_output=False)
        #NSGAII (gen=100, cr=0.95, eta_c=10, m=0.01, eta_m=10)
        #sga_gray.__init__(gen=1, cr=0.95, m=0.02, elitism=1, mutation=PyGMO.algorithm._algorithm._gray_mutation_type.UNIFORM, selection=PyGMO.algorithm._algorithm._gray_selection_type.ROULETTE, crossover=PyGMO.algorithm._algorithm._gray_crossover_type.SINGLE_POINT)
        #nsga_II.__init__(gen=100, cr=0.95, eta_c=10, m=0.01, eta_m=10)
        #emoa  (hv_algorithm=None, gen=100, sel_m=2, cr=0.95, eta_c=10, m=0.01, eta_m=10)
        #pade  (gen=10, max_parallelism=1, decomposition=PyGMO.problem._problem._decomposition_method.BI, solver=None, T=8, weights=PyGMO.algorithm._algorithm._weight_generation.LOW_DISCREPANCY, z=[])
        #nspso (gen=100, minW=0.4, maxW=1.0, C1=2.0, C2=2.0, CHI=1.0, v_coeff=0.5, leader_selection_range=5, diversity_mechanism=PyGMO.algorithm._algorithm._diversity_mechanism.CROWDING_DISTANCE)
        #corana: (iter=10000, Ts=10, Tf=0.1, steps=1, bin_size=20, range=1)

        #if Alg[6:] in ["de", "bee_colony", "nsga_II", "pso", "pso_gen", "cmaes", "py_cmaes",
        #               "spea2", "nspso", "pade", "sea", "vega", "sga", "sga_gray", "de_1220",
        #               "mde_pbx", "jde"]:
        #    algo.gen = ngen
        #elif Alg[6:] in ["ihs", "monte_carlo", "sa_corana"]:
        #    algo.iter = ngen
        #elif Alg[6:] == "sms_emoa":
        #    print "sms_emoa not working"
        #else:
        #    sys.exit("improper PyGMO algorithm chosen")
        #algo.f = 1
        #algo.cr=1
        #algo.ftol = 1e-3
        #algo.xtol = 1e-3
        #algo.variant = 2
        #algo.screen_output = False
        #if Alg == "PyGMO_de":
        #    algo = PyGMO.algorithm.de(gen=ngen, f=1, cr=1, variant=2,
        #                              ftol=1e-3, xtol=1e-3, screen_output=False)
        #else:
        #    algo = PyGMO.algorithm.de(gen=ngen, f=1, cr=1, variant=2,
        #                              ftol=1e-3, xtol=1e-3, screen_output=False)
        #pop = PyGMO.population(prob, nIndiv)
        #pop = PyGMO.population(prob, nIndiv, seed=13598)  # Seed fixed for random generation of first individuals
        #algo.evolve(pop)
        isl = PyGMO.island(OptAlg, prob, AlgOptions.nIndiv)
        isl.evolve(1)
        isl.join()
        xOpt = isl.population.champion.x
        # fOpt = isl.population.champion.f[0]
        nEval = isl.population.problem.fevals
        nGen = int(nEval/AlgOptions.nIndiv)  # currently being overwritten and therefore not being used
        StatusReport = False  # turn off status report, so not remade (and destroyed) in following call!
        fOpt, gOpt, fail = OptSysEq(xOpt)  # verification of optimal solution as values above are based on penalty!

#-----------------------------------------------------------------------------------------------------------------------
#        SciPy optimization
#-----------------------------------------------------------------------------------------------------------------------
    elif Alg[:5] == "scipy":
        import scipy.optimize as sciopt
        bounds = [[]]*len(x0)
        for ii in range(len(x0)):
            bounds[ii] = (xL[ii], xU[ii])
        print bounds
        if Alg[6:] == "de":
            sciopt.differential_evolution(DefOptSysEq, bounds, strategy='best1bin',
                                          maxiter=None, popsize=15, tol=0.01, mutation=(0.5, 1),
                                          recombination=0.7, seed=None, callback=None, disp=False,
                                          polish=True, init='latinhypercube')

#-----------------------------------------------------------------------------------------------------------------------
#        Simple optimization algorithms to demonstrate use of custom algorithms
#-----------------------------------------------------------------------------------------------------------------------
    #TODO: add history to these
    elif Alg == "SteepestDescentSUMT":
        from CustomAlgs import SteepestDescentSUMT
        fOpt, xOpt, nIter, nEval = SteepestDescentSUMT(DefOptSysEq, x0, xL, xU)
    elif Alg == "NewtonSUMT":
        from CustomAlgs import NewtonSUMT
        fOpt, xOpt, nIter, nEval = NewtonSUMT(DefOptSysEq, x0, xL, xU)

#-----------------------------------------------------------------------------------------------------------------------
#
#-----------------------------------------------------------------------------------------------------------------------
    else:
        sys.exit("Error on line 694 of __init__.py: algorithm misspelled or not supported")

#-----------------------------------------------------------------------------------------------------------------------
#       Optimization post-processing
#-----------------------------------------------------------------------------------------------------------------------
    if StatusReport == 1:
        OptHis2HTML.OptHis2HTML(OptName, OptAlg, DesOptDir, xL, xU, DesVarNorm, inform.values()[0], OptTime0)
    OptTime1 = time.time()
    loctime0 = time.localtime(OptTime0)
    hhmmss0 = time.strftime("%H", loctime0)+' : '+time.strftime("%M", loctime0)+' : '+time.strftime("%S", loctime0)
    loctime1 = time.localtime(OptTime1)
    hhmmss1 = time.strftime("%H", loctime1)+' : '+time.strftime("%M", loctime1)+' : '+time.strftime("%S", loctime1)
    diff = OptTime1 - OptTime0
    h0, m0, s0 = (diff // 3600), int((diff / 60) - (diff // 3600) * 60), diff % 60
    OptTime = "%02d" % (h0) + " : " + "%02d" % (m0) + " : " + "%02d" % (s0)

#-----------------------------------------------------------------------------------------------------------------------
#       Read in results from history files
#-----------------------------------------------------------------------------------------------------------------------
    OptHist = pyOpt.History(OptName, "r")
    fAll = OptHist.read([0, -1], ["obj"])[0]["obj"]
    xAll = OptHist.read([0, -1], ["x"])[0]["x"]
    gAll = OptHist.read([0, -1], ["con"])[0]["con"]
    if Alg == "NLPQLP":
        gAll = [x * -1 for x in gAll]
    gGradIter = OptHist.read([0, -1], ["grad_con"])[0]["grad_con"]
    fGradIter = OptHist.read([0, -1], ["grad_obj"])[0]["grad_obj"]
    failIter = OptHist.read([0, -1], ["fail"])[0]["fail"]
    if Alg == "COBYLA" or Alg == "NSGA2" or Alg[:5] == "PyGMO":
        fIter = fAll
        xIter = xAll
        gIter = gAll
    else:
        fIter = [[]] * len(fGradIter)
        xIter = [[]] * len(fGradIter)
        gIter = [[]] * len(fGradIter)
        # SuIter = [[]] * len(fGradIter)
        for ii in range(len(fGradIter)):
            Posdg = OptHist.cues["grad_con"][ii][0]
            Posf = OptHist.cues["obj"][ii][0]
            iii = 0
            while Posdg > Posf:
                iii = iii + 1
                try:
                    Posf = OptHist.cues["obj"][iii][0]
                except:
                    Posf = Posdg + 1
            iii = iii - 1
            fIter[ii] = fAll[iii]
            xIter[ii] = xAll[iii]
            gIter[ii] = gAll[iii]
    OptHist.close()

#-----------------------------------------------------------------------------------------------------------------------
#       Convert all data to numpy arrays
#-----------------------------------------------------------------------------------------------------------------------
    fIter = np.asarray(fIter)
    xIter = np.asarray(xIter)
    gIter = np.asarray(gIter)
    gGradIter = np.asarray(gGradIter)
    fGradIter = np.asarray(fGradIter)

#-----------------------------------------------------------------------------------------------------------------------
# Denormalization of design variables
#-----------------------------------------------------------------------------------------------------------------------
    xOpt = np.resize(xOpt[0:np.size(xL)], np.size(xL))
    if DesVarNorm in ["None", None, False]:
        x0norm = []
        xIterNorm = []
        xOptNorm = []
    else:
        xOpt = np.resize(xOpt, [np.size(xL), ])
        xOptNorm = xOpt
        xOpt = denormalize(xOptNorm.T, xL, xU, DesVarNorm)
        try:
            xIterNorm = xIter[:, 0:np.size(xL)]
            xIter = np.zeros(np.shape(xIterNorm))
            for ii in range(len(xIterNorm)):
                xIter[ii] = denormalize(xIterNorm[ii], xL, xU, DesVarNorm)
        except:
            x0norm = []
            xIterNorm = []
            xOptNorm = []
    nIter = np.size(fIter)
    if np.size(fIter) > 0:
        if fIter[0] != 0:
            fIterNorm = fIter / fIter[0]  # fIterNorm=(fIter-fIter[nEval-1])/(fIter[0]-fIter[nEval-1])
        else:
            fIterNorm = fIter
    else:
        fIterNorm = []

#-----------------------------------------------------------------------------------------------------------------------
#  Active constraints for use in the calculation of the Lagrangian multipliers and optimality criterion
#-----------------------------------------------------------------------------------------------------------------------
    epsActive = 1e-3
    xL_ActiveIndex = (xOpt - xL) / xU < epsActive
    xU_ActiveIndex = (xU - xOpt) / xU < epsActive
    xL_Grad = -np.eye(nx)
    xU_Grad = np.eye(nx)
    xL_GradActive = xL_Grad[:, xL_ActiveIndex]
    xU_GradActive = xU_Grad[:, xU_ActiveIndex]  # or the other way around!
    xGradActive = np.concatenate((xL_GradActive, xU_GradActive), axis=1)
    # TODO change so that 1D optimization works!
    try:
        xL_Active = xL[xL_ActiveIndex]
    except:
        xL_Active = np.array([])
    try:
        xU_Active = xU[xU_ActiveIndex]
    except:
        xU_Active = np.array([])
    if len(xL_Active)==0:
        xActive = xU_Active
    elif len(xU_Active)==0:
        xActive = xL_Active
    else:
        xActive = np.concatenate((xL_Active, xU_Active))
    if np.size(xL) == 1:
        if xL_ActiveIndex == False:
            xL_Active = np.array([])
        else:
            xL_Active = xL
        if xU_ActiveIndex == False:
            xU_Active = np.array([])
        else:
            xU_Active = xU
    else:
        xL_Active = xL[xL_ActiveIndex]
        xU_Active = np.array(xU[xU_ActiveIndex])
    if len(xL_Active)==0:
        xLU_Active = xU_Active
    elif len(xU_Active)==0:
        xLU_Active = xL_Active
    else:
        xLU_Active = np.concatenate((xL_Active, xU_Active))
    #TODO needs to be investigated for PyGMO!
    # are there nonlinear constraints active, in case equality constraints are added later, this must also be added
    if np.size(gc) > 0 and Alg[:5] != "PyGMO":
        gMaxIter = np.zeros([nIter])
        for ii in range(len(gIter)):
            gMaxIter[ii] = max(gIter[ii])
        gOpt = gIter[nIter - 1]
        gOptActiveIndex = gOpt > -epsActive
        gOptActive = gOpt[gOpt > -epsActive]
    elif np.size(gc) == 0:
        gOptActiveIndex = [[False]] * len(gc)
        gOptActive = np.array([])
        gMaxIter = np.array([] * nIter)
        gOpt = np.array([])
    else:
        gMaxIter = np.zeros([nIter])
        for ii in range(len(gIter)):
            gMaxIter[ii] = max(gIter[ii])
        gOptActiveIndex = gOpt > -epsActive
        gOptActive = gOpt[gOpt > -epsActive]
    if len(xLU_Active)==0:
        g_xLU_OptActive = gOptActive
    elif len(gOptActive)==0:
        g_xLU_OptActive = xLU_Active
    else:
        if np.size(xLU_Active) == 1 and np.size(gOptActive) == 1:
            g_xLU_OptActive = np.array([xLU_Active, gOptActive])
        else:
            g_xLU_OptActive = np.concatenate((xLU_Active, gOptActive))
    if np.size(fGradIter) > 0:
        #fGradOpt = fGradIter[nIter - 1]
        fGradOpt = fGradIter[-1]
        if np.size(gc) > 0:
            gGradOpt = gGradIter[nIter - 1]
            gGradOpt = gGradOpt.reshape([ng, nx]).T
            gGradOptActive = gGradOpt[:, gOptActiveIndex == True]
            try:
                cOptActive = gc[gOptActiveIndex == True]
                cActiveType = ["Constraint"]*np.size(cOptActive)
            except:
                cOptActive = []
                cActiveType = []
            if np.size(xGradActive) == 0:
                g_xLU_GradOptActive = gGradOptActive
                c_xLU_OptActive = cOptActive
                c_xLU_ActiveType = cActiveType
            elif np.size(gGradOptActive) == 0:
                g_xLU_GradOptActive = xGradActive
                c_xLU_OptActive = xActive
                c_xLU_ActiveType = ["Bound"]*np.size(xActive)
            else:
                g_xLU_GradOptActive = np.concatenate((gGradOptActive, xGradActive), axis=1)
                c_xLU_OptActive = np.concatenate((cOptActive, xActive))
                xActiveType = ["Bound"]*np.size(xActive)
                c_xLU_ActiveType = np.concatenate((cActiveType, xActiveType))
        else:
            g_xLU_GradOptActive = xGradActive
            gGradOpt = np.array([])
            c_xLU_OptActive = np.array([])
            g_xLU_GradOptActive = np.array([])
            c_xLU_ActiveType = np.array([])

    else:
        fGradOpt = np.array([])
        gGradOpt = np.array([])
        g_xLU_GradOptActive = np.array([])
        c_xLU_OptActive = np.array([])
        c_xLU_ActiveType = np.array([])

#-----------------------------------------------------------------------------------------------------------------------
#   §      Post-processing of optimization solution
#-----------------------------------------------------------------------------------------------------------------------
    lambda_c, SPg, OptRes, Opt1Order, KKTmax = OptPostProc(fGradOpt, gc, gOptActiveIndex, g_xLU_GradOptActive,
                                                           c_xLU_OptActive, c_xLU_ActiveType, DesVarNorm)

#-----------------------------------------------------------------------------------------------------------------------
#   §      Save optimizaiton solution to file
#-----------------------------------------------------------------------------------------------------------------------
    OptSolData = {}
    OptSolData['x0'] = x0
    OptSolData['xOpt'] = xOpt
    OptSolData['xOptNorm'] = xOptNorm
    OptSolData['xIter'] = xIter
    OptSolData['xIterNorm'] = xIterNorm
    OptSolData['fOpt'] = fOpt
    OptSolData['fIter'] = fIter
    OptSolData['fIterNorm'] = fIterNorm
    OptSolData['gIter'] = gIter
    OptSolData['gMaxIter'] = gMaxIter
    OptSolData['gOpt'] = gOpt
    OptSolData['fGradIter'] = fGradIter
    OptSolData['gGradIter'] = gGradIter
    OptSolData['fGradOpt'] = fGradOpt
    OptSolData['gGradOpt'] = gGradOpt
    OptSolData['OptName'] = OptName
    OptSolData['OptModel'] = OptModel
    OptSolData['OptTime'] = OptTime
    OptSolData['loctime'] = loctime
    OptSolData['today'] = today
    OptSolData['computerName'] = computerName
    OptSolData['operatingSystem'] = operatingSystem
    OptSolData['architecture'] = architecture
    OptSolData['nProcessors'] = nProcessors
    OptSolData['userName'] = userName
    OptSolData['Alg'] = Alg
    OptSolData['DesVarNorm'] = DesVarNorm
    OptSolData['KKTmax'] = KKTmax
    OptSolData['lambda_c'] = lambda_c
    OptSolData['nEval'] = nEval
    OptSolData['nIter'] = nIter
    OptSolData['SPg'] = SPg
    OptSolData['gc'] = gc
    #OptSolData['OptAlg'] = OptAlg
    OptSolData['SensCalc'] = SensCalc
    OptSolData['xIterNorm'] = xIterNorm
    OptSolData['x0norm'] = x0norm
    OptSolData['xL'] = xL
    OptSolData['xU'] = xU
    OptSolData['ng'] = ng
    OptSolData['nx'] = nx
    OptSolData['Opt1Order'] = Opt1Order
    OptSolData['hhmmss0'] = hhmmss0
    OptSolData['hhmmss1'] = hhmmss1


#-----------------------------------------------------------------------------------------------------------------------
#   §    Save in Python format
#-----------------------------------------------------------------------------------------------------------------------
    output = open(OptName + "_OptSol.pkl", 'wb')
    pickle.dump(OptSolData, output)
    output.close()
    np.savez(OptName + "_OptSol", x0, xOpt, xOptNorm, xIter, xIterNorm, xIter, xIterNorm, fOpt, fIter, fIterNorm, gIter,
             gMaxIter, gOpt, fGradIter, gGradIter,
             fGradOpt, gGradOpt, OptName, OptModel, OptTime, loctime, today, computerName, operatingSystem,
             architecture, nProcessors, userName, Alg, DesVarNorm, KKTmax)

#-----------------------------------------------------------------------------------------------------------------------
#   §5.2    Save in MATLAB format
#-----------------------------------------------------------------------------------------------------------------------
    #OptSolData['OptAlg'] = []
    spio.savemat(OptName + '_OptSol.mat', OptSolData, oned_as='row')



#-----------------------------------------------------------------------------------------------------------------------
#
#-----------------------------------------------------------------------------------------------------------------------
    os.chdir(MainDir)
    if LocalRun is True and Debug is False:
        try:
            shutil.move(RunDir + os.sep + OptName,
                        ResultsDir + os.sep + OptName + os.sep + "RunFiles" + os.sep)
        # except WindowsError:
        except:
            print "Run files not deleted from " + RunDir + os.sep + OptName
            shutil.copytree(RunDir + os.sep + OptName,
                            ResultsDir + os.sep + OptName + os.sep + "RunFiles" + os.sep)

#-----------------------------------------------------------------------------------------------------------------------
#   §    Graphical post-processing
#-----------------------------------------------------------------------------------------------------------------------
    if ResultReport is True:
        print("Entering preprocessing mode")
        OptResultReport.OptResultReport(OptName, OptAlg, DesOptDir, diagrams=1, tables=1, lyx=1)
        # try: OptResultReport.OptResultReport(OptName, diagrams=1, tables=1, lyx=1)
        # except: print("Problem with generation of Result Report. Check if all prerequisites are installed")
    if Video is True:
        OptVideo.OptVideo(OptName)


#-----------------------------------------------------------------------------------------------------------------------
#   § Print out
#-----------------------------------------------------------------------------------------------------------------------
    if PrintOut is True:
        print("")
        print("--------------------------------------------------------------------------------")
        print("Optimization results - DesOptPy")
        print("--------------------------------------------------------------------------------")
        print("Optimization with " + Alg)
        print("g* = " + str(gOpt))
        print("x* = " + str(xOpt.T))
        print("f* = " + str(fOpt))
        print("Lagrangian multipliers = " + str(lambda_c))
        print("Shadow prices = " + str(SPg))
        try:
            print("nGen = " + str(nGen))
        except:
            print("nIter = " + str(nIter))
        print("nEval = " + str(nEval))
        print("Time of optimization [h:m:s] = " + OptTime)
        if Debug is False:
            print("See results directory: " + ResultsDir + os.sep + OptName + os.sep)
        else:
            print("Local run, no results saved to results directory")
        print("--------------------------------------------------------------------------------")
        if operatingSystem == "Linux" and Alarm is True:
            t = 1
            freq = 350
            os.system('play --no-show-progress --null --channels 1 synth %s sine %f' % (t, freq))
    return xOpt, fOpt, SPg
Exemplo n.º 7
0
def OptHis2HTML(OptName, Alg, DesOptDir, xL, xU, DesVarNorm, inform, starttime, StatusDirectory=""):

    # ----------------------------------------------------------------------------------------------------
    # General calculations for the uppermost information table are computed like time running, algorithm
    # name, optimization problem name etc.
    # ----------------------------------------------------------------------------------------------------
    StartTime = str(starttime)[0:10] + "000"
    EndTime = ""
    RefRate = '2000'
    if inform != "Running":
        EndTime = str(time())[0:10] + "000"
        RefRate = '1000000'
    Iteration = 'Iteration'   # Label and Legends may be Iteration, Generation or Evaluations depending on Algorithm

    if StatusDirectory == "":  # Change the target directory for the status report files if the user wants to
        StatusDirectory = DesOptDir

    # Variables for the data extraction
    pos_of_best_ind = []  # position of the best individual if a GA or ES is used as algorithm
    fIter = []  # objective function array
    xIter = []  # design vector array
    gIter = []  # constraint vector array

    # template_directory= DesOpt_Base + "/.DesOptPy/_OptStatusReport/"  # directory with the html files etc.

    template_directory = os.path.dirname(
        os.path.realpath(__file__)) + "/StatusReportFiles/"  # directory with the html files etc.

    OptHist = History(OptName, "r")  # open the history file generated by pyOpt or own algorithm

    # read the obj fct, design and constraint vector values into the array

    fAll = OptHist.read([0, -1], ["obj"])[0]["obj"]
    xAll = OptHist.read([0, -1], ["x"])[0]["x"]
    gAll = OptHist.read([0, -1], ["con"])[0]["con"]

    # ----------------------------------------------------------------------------------------------------
    # The next lines manipulate the data corresponding to the used algorithm. pyOpt Histories are different
    # depending on the used algorithm
    # ----------------------------------------------------------------------------------------------------

    if Alg.name == "NLPQLP":
        gAll = [x * -1 for x in gAll]

    fGradIter = OptHist.read([0, -1], ["grad_obj"])[0]["grad_obj"]

    if Alg.name == "COBYLA":
        fIter = fAll
        xIter = xAll
        gIter = gAll

    # If NSGA2 is used the best individual of a population is considered the objective fct, otherwise every
    # individual would be shown in the graphs

    elif Alg.name == "NSGA-II":
        Iteration = 'Generation'
        if inform == 0:
            inform = 'Optimization terminated successfully'

        PopSize = Alg.options['PopSize'][1]

        for i in range(0, fAll.__len__() / PopSize):  # Iteration trough the Populations

            best_fitness = 9999999
            max_violation_of_all_g = np.empty(PopSize)
            max_violation_of_all_g.fill(99999999)

            for u in range(0, PopSize):  # Iteration trough the Individuals of the actual population
                if np.max(gAll[i * PopSize + u]) < max_violation_of_all_g[u]:
                    max_violation_of_all_g[u] = np.max(gAll[i * PopSize + u])

            pos_smallest_violation = np.argmin(max_violation_of_all_g)

            # only not feasible designs, so choose the less violated one as best

            if max_violation_of_all_g[pos_smallest_violation] > 0:
                fIter.append(fAll[i * PopSize + pos_smallest_violation])
                xIter.append(xAll[i * PopSize + pos_smallest_violation])
                gIter.append(gAll[i * PopSize + pos_smallest_violation])
            else:  # find the best feasible one
                # Iteration trough the Individuals of the actual population
                for u in range(0, PopSize):
                    if np.max(fAll[i * PopSize + u]) < best_fitness:
                        if np.max(gAll[i * PopSize + u]) <= 0:
                            best_fitness = fAll[i * PopSize + u]
                            pos_of_best_ind = i * PopSize + u

                fIter.append(fAll[pos_of_best_ind])
                xIter.append(xAll[pos_of_best_ind])
                gIter.append(gAll[pos_of_best_ind])


    else:
        fIter = [[]] * len(fGradIter)
        xIter = [[]] * len(fGradIter)
        gIter = [[]] * len(fGradIter)

        for ii in range(len(fIter)):

            Posdg = OptHist.cues["grad_con"][ii][0]
            Posf = OptHist.cues["obj"][ii][0]
            iii = 0
            while Posdg > Posf:
                iii = iii + 1
                try:
                    Posf = OptHist.cues["obj"][iii][0]
                except:
                    Posf = Posdg + 1
            iii = iii - 1
            fIter[ii] = fAll[iii]
            xIter[ii] = xAll[iii]
            gIter[ii] = gAll[iii]

    if Alg.name != "NSGA-II":
        if len(fGradIter) == 0:  # first calculation
            fIter = fAll
            xIter = xAll
            gIter = gAll

    OptHist.close()

    # convert the arrays to numpy arrays

    fIter = np.asarray(fIter)
    xIter = np.asarray(xIter)
    gIter = np.asarray(gIter)
    niter = len(fIter) - 1

    # ----------------------------------------------------------------------------------------------------
    # The design variables are normalized or denormalized so both can be displayed in the graphs and tables
    # ----------------------------------------------------------------------------------------------------

    if xIter.size != 0:
        if DesVarNorm == False:
            xIter_denormalized = np.zeros((niter + 1, len(xIter[0])))
            for y in range(0, niter + 1):
                xIter_denormalized[y] = xIter[y]
            for y in range(0, niter + 1):
                [xIter[y, :], xLnorm, xUnorm] = normalize(xIter_denormalized[y, :], xL, xU, "xLxU")
        else:
            xIter_denormalized = np.zeros((niter + 1, len(xIter[0])))
            for y in range(0, niter + 1):
                xIter_denormalized[y, :] = denormalize(xIter[y, :], xL, xU, DesVarNorm)

    time_now = strftime("%Y-%b-%d %H:%M:%S", localtime())  # update the time for the information table

    number_des_vars = "0"
    number_constraints = "0"

    # ----------------------------------------------------------------------------------------------------
    # The .csv files are created and the first row is filled with the correct labels. Those .csv files
    # are loaded by the javascript library. Afterwards the files are closed.
    # ----------------------------------------------------------------------------------------------------

    with open('objFct_maxCon.csv', 'wb') as csvfile:
        datawriter = csv.writer(csvfile, dialect='excel')
        datawriter.writerow(['Iteration', 'Objective function', 'Constraint'])
    csvfile.close()

    with open('desVarsNorm.csv', 'wb') as csvfile:
        datawriter = csv.writer(csvfile, delimiter=',', escapechar=' ', quoting=csv.QUOTE_NONE)
        labels = ['Iteration']
        if xIter.size != 0:
            for i in range(1, xIter.shape[1] + 1):
                labels = labels + ['x' + str(i)]
        datawriter.writerow(labels)
    csvfile.close()

    with open('desVars.csv', 'wb') as csvfile:
        datawriter = csv.writer(csvfile, delimiter=',', escapechar=' ', quoting=csv.QUOTE_NONE)
        labels = ['Iteration']
        if xIter.size != 0:
            for i in range(1, xIter.shape[1] + 1):
                labels = labels + ['x' + str(i)]
        datawriter.writerow(labels)
    csvfile.close()

    with open('constraints.csv', 'wb') as csvfile:
        datawriter = csv.writer(csvfile, delimiter=',', escapechar=' ', quoting=csv.QUOTE_NONE)
        labels = ['Iteration']
        if gIter.size != 0:
            for i in range(1, gIter.shape[1] + 1):
                labels = labels + ['g' + str(i)]
        datawriter.writerow(labels)
    csvfile.close()

    # ----------------------------------------------------------------------------------------------------
    # Now the real data like obj fct value and constraint values are writen into the .csv files
    # ----------------------------------------------------------------------------------------------------

    # Objective function and maximum constraint values
    for x in range(0, niter + 1):
        with open('objFct_maxCon.csv', 'ab') as csvfile:
            datawriter = csv.writer(csvfile, dialect='excel')
            datawriter.writerow([x, str(float(fIter[x])), float(np.max(gIter[x]))])
        csvfile.close()

    # Normalized design variables
    if xIter.size != 0:
        for x in range(0, niter + 1):
            datasets = str(xIter[x][:].tolist()).strip('[]')
            with open('desVarsNorm.csv', 'ab') as csvfile:
                datawriter = csv.writer(csvfile, dialect='excel', quotechar=' ')
                datawriter.writerow([x, datasets])
            csvfile.close()

    # non normalized design variables
    if xIter.size != 0:
        for x in range(0, niter + 1):
            datasets_denorm = str(xIter_denormalized[x][:].tolist()).strip('[]')
            with open('desVars.csv', 'ab') as csvfile:
                datawriter = csv.writer(csvfile, dialect='excel', quotechar=' ')
                datawriter.writerow([x, datasets_denorm])
            csvfile.close()

    # constraint variables
    if gIter.size != 0:
        for x in range(0, niter + 1):
            datasetsg = str(gIter[x][:].tolist()).strip('[]')
            with open('constraints.csv', 'ab') as csvfile:
                datawriter = csv.writer(csvfile, dialect='excel', quotechar=' ')
                datawriter.writerow([x, datasetsg])
            csvfile.close()

    # ----------------------------------------------------------------------------------------------------
    # The data for the graphs is generated, now follows the table generation routine
    # ----------------------------------------------------------------------------------------------------

    # Objective function table generation
    ObjFct_table = "<td></td>"
    if xIter.size != 0:
        if gIter.size != 0:
            for x in range(0, niter + 1):
                ObjFct_table += "<tr>\n<td>" + str(x) + "</td>\n<td>" + str(round(fIter[x], 4)) + "</td>\n<td>" + str(
                    round(np.max(gIter[x]), 4)) + "</td>\n</tr>"
        else:
            for x in range(0, niter + 1):
                ObjFct_table += "<tr>\n<td>" + str(x) + "</td>\n<td>" + str(
                    round(fIter[x], 4)) + "</td>\n<td> no constraints </td>\n</tr>"

    # Design Variable table generation
    DesVar_table = "<td></td>"
    if xIter.size != 0:
        number_des_vars = str(len(xIter[0]))

        for x in range(0, len(xIter[0])):
            DesVar_table += "<td>" + "x&#770;<sub>" + str(x + 1) + "</sub></td>" + "<td>" + "x<sub>" + str(
                x + 1) + " </sub></td>"

        for y in range(0, niter + 1):
            DesVar_table += "<tr>\n<td>" + str(y) + "</td>"
            for x in range(0, len(xIter[0])):
                DesVar_table += "<td>" + str(round(xIter[y][x], 4)) + "</td><td>" + str(
                    round(xIter_denormalized[y][x], 4)) + "</td>"
            DesVar_table += "</tr>"

    # Constraint  table generation
    Constraint_table = "<td></td>"
    if gIter.size != 0:
        number_constraints = str(len(gIter[0]))
        for x in range(0, len(gIter[0])):
            Constraint_table += "<td>" + "g<sub>" + str(x + 1) + "</sub></td>"

        for y in range(0, niter + 1):
            Constraint_table += "<tr>\n<td>" + str(y) + "</td>"
            for x in range(0, len(gIter[0])):
                if (round(gIter[y][x], 4) > 0):
                    Constraint_table += "<td class=\"negativ\">" + str(round(gIter[y][x], 4)) + "</td>"
                else:
                    Constraint_table += "<td class=\"positiv\">" + str(round(gIter[y][x], 4)) + "</td>"
            Constraint_table += "</tr>"

    # ----------------------------------------------------------------------------------------------------
    # Everything is computed, now the html master template is opened and the placeholders are replaced
    # with the right values
    # ----------------------------------------------------------------------------------------------------

    html = open(template_directory + '/initial.html', 'r')  # open template
    hstr = html.read()
    html.close()

    # replace the placeholder values with the true values
    if gIter.size != 0 or gIter.size > 100:
        hstrnew = hstr.replace('xxxxName', OptName)
        hstrnew = hstrnew.replace('xxxxTime', time_now)
        hstrnew = hstrnew.replace('xxxxtableObjFct', ObjFct_table)
        hstrnew = hstrnew.replace('xxxxtableDesVar', DesVar_table)
        hstrnew = hstrnew.replace('xxxxnumber_des_var', number_des_vars * 2)
        hstrnew = hstrnew.replace('xxxxtableConstr', Constraint_table)
        hstrnew = hstrnew.replace('xxxxnumber_constraints', number_constraints)
        hstrnew = hstrnew.replace('xxxxAlg', Alg.name)
        hstrnew = hstrnew.replace('xxxxStatus', str(inform))
        hstrnew = hstrnew.replace('xxxxRefRate', RefRate)
        hstrnew = hstrnew.replace('xxxxStartTime', StartTime)
        hstrnew = hstrnew.replace('xxxxEndTime', EndTime)
        hstrnew = hstrnew.replace('xxxxIteration', Iteration)
    else:
        hstrnew = hstr.replace('xxxxName', OptName)
        hstrnew = hstrnew.replace('xxxxTime', time_now)
        hstrnew = hstrnew.replace('xxxxtableObjFct', ObjFct_table)
        hstrnew = hstrnew.replace('xxxxtableDesVar', DesVar_table)
        hstrnew = hstrnew.replace('xxxxAlg', Alg.name)
        hstrnew = hstrnew.replace('xxxxStatus', inform)
        hstrnew = hstrnew.replace('xxxxRefRate', RefRate)
        hstrnew = hstrnew.replace('xxxxStartTime', StartTime)
        hstrnew = hstrnew.replace('xxxxEndTime', EndTime)
        hstrnew = hstrnew.replace('xxxxIteration', Iteration)

        # remove the hmtl parts which are only needed for constrained problems
        try:
            for i in range(0, 10):
                hstrnew = hstrnew[0:hstrnew.find("<!--Start of constraint html part-->")] + hstrnew[hstrnew.find(
                    "<!--End of constraint html part-->") + 34:-1]
        except:
            print ""

    # generate a new html file which is filled with the actual content
    html = open('initial1.html', 'w')
    html.write(hstrnew)
    html.close()

    # copy everything needed to the result directory
    if not os.path.exists(StatusDirectory + os.sep + "Results" + os.sep + OptName):
        os.makedirs(StatusDirectory + os.sep + "Results" + os.sep + OptName)
    shutil.copy("initial1.html",
                StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep + OptName + "_Status.html")
    shutil.copy("objFct_maxCon.csv",
                StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep + "objFct_maxCon.csv")
    shutil.copy("desVars.csv",
                StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep + "desVars.csv")
    shutil.copy("desVarsNorm.csv",
                StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep + "desVarsNorm.csv")
    shutil.copy("constraints.csv",
                StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep + "constraints.csv")
    for file in glob.glob(template_directory + "*.png"):
        shutil.copy(file, StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep)
    for file in glob.glob(template_directory + "*.js"):
        shutil.copy(file, StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep)
    for file in glob.glob(template_directory + "*.css"):
        shutil.copy(file, StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep)
    for file in glob.glob(template_directory + "*.ico"):
        shutil.copy(file, StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep)
    for file in glob.glob(template_directory + "view_results.py"):
        shutil.copy(file, StatusDirectory + os.sep + "Results" + os.sep + OptName + os.sep)
    return 0