Exemplo n.º 1
0
Arquivo: filter.py Projeto: ctuna/ring
  def go(self, xn):
    if (self.x == None):
      self.x = ones(len(self.b)) * xn * 1.0
      self.y = ones(len(self.a)) * xn * 1.0 * sum(self.b) / (1+sum(self.a))

    self.x = concatenate([[xn], self.x[:-1]])
    yn = dot(self.b, self.x) - dot(self.a, self.y)
    self.y = concatenate([[yn], self.y[:-1]])
    return yn
Exemplo n.º 2
0
    def delete_n_rows(self, i, n=1):
        """
        Delete `n` rows, starting at the row with the index `i`.
        Returns the old data.
        """

        n = min(self.nrows-i, n)

        # To make sure that the operation does not fail and leaves invalid
        # data, we first create the new column datas in new_data, and then,
        # if it worked for all columns, we will assign the new data.
        new_data = list()
        rv = list()
        j = 0
        for col in self.columns:
            rv.append( col.data[i:i+n] )
            new_data.append(concatenate( [col.data[0:i], col.data[i+n:]] ))
            j += 1
            
        # assign new data
        j = 0
        for col in self.columns:
            col.data = new_data[j]
            j += 1            
        self.update_rows()

        return rv
Exemplo n.º 3
0
    def insert_rows(self, i, rows):
        """
        Insert the given `rows` (list of one-dimensional arrays) at row `i`.
        The given arrays must all have the same length and there must be
        exactly as many arrays as there are columns.  Of course the arrays
        must match the Column type or it must be possible to convert
        them to the Column type using astype.
        """
        # [ [all new rows of col1], [all new rows of col2], ...]
        if len(rows) != self.ncols:
            raise ValueError("When adding new rows, you must provide the values in a transposed form: TODO: EXAMPLE.")

        # To make sure that the operation does not fail and leaves invalid
        # data, we first create the new column datas in new_data, and then,
        # if it worked for all columns, we will assign the new data.
        new_data = list()
        j = 0
        first_length = None
        for col in self.columns:
            if first_length is None:
                first_length = len(rows[j])
            else:
                if len(rows[j]) != first_length:
                    raise ValueError("Each column must have the same number of rows inserted. Row %d has not the same length as Row 0" % j )
            new_data.append( concatenate([col.data[0:i], rows[j], col.data[i:]]) )
            j += 1

        # assign new data
        j = 0
        for col in self.columns:
            col.data = new_data[j]
            j += 1            
        self.update_rows()    
Exemplo n.º 4
0
def iahistogram(f):
    """  o Purpose
      Image histogram.

  o Synopsis
      h = iahistogram(f)

  o Input
      f: 

  o Output
      h: 

  o Description
  
  o Examples
      f = iaread('woodlog.pgm')
      iashow(f)
      h = iahistogram(f)
      g,d = iaplot(h)
      g('set data style boxes')
      g.plot(d)
      showfig(h)
      
"""
    from Numeric import asarray,searchsorted,sort,ravel,concatenate,product 
    
    f = asarray(f)
    n = searchsorted(sort(ravel(f)), range(max(ravel(f))+1))
    n = concatenate([n, [product(f.shape)]])
    h = n[1:]-n[:-1]
    
    return h
Exemplo n.º 5
0
def atom_array_of_part(part):
    "Return an Array of all atoms in the Part. Try to be linear time."
    res = []
    for m in part.molecules:
        res.append( array(m.atlist) )
    # concatenate might fail for chunks with exactly 1 atom -- fix later ####@@@@
    return concatenate(res) ###k
Exemplo n.º 6
0
    def fingerprint(self, which_blocks='quartets', include_mean=True,\
        normalize=True):
        """Returns fingerprint data for fingerprint plots.
        
        which_blocks: whether to include only the usual 4-codon quartets (the
                      default), the split blocks only, or all blocks.
        include_mean: whether to include the mean (True).
        normalize:    whether to normalize so that the quartets sum to 1 (True)
        """ 
        if which_blocks == 'split':
            blocks = self.SplitBlocks
        elif which_blocks == 'quartets':
            blocks = self.SingleAABlocks
        elif which_blocks == 'all':
            blocks = self.Blocks
        else:
            raise "Got invalid option %s for which_blocks:\n" % which_blocks+\
                    "  (valid options: 'split', 'quartets', 'all')."
        result = []
        for b in blocks:    #iterates over doublet string
            U, C, A, G = [self[b+i] for i in 'UCAG']
            all = U+C+A+G
            if G+C:
                g_ratio = G/(G+C)
            else:
                g_ratio = 0.5

            if A+U:
                a_ratio = A/(A+U)
            else:
                a_ratio=0.5
                
            result.append([g_ratio, a_ratio, all])
        result = array(result)
        
        if normalize:   #make the shown bubbles sum to 1
            sum_ = sum(result[:,-1])
            if sum_:
                result[:,-1] /= sum_
        
        if include_mean: #calculate mean from all codons
            third = self.positionalBases().Third
            U, C, A, G = [third[i] for i in 'UCAG']
            if G+C:
                g_ratio = G/(G+C)
            else:
                g_ratio = 0.5
            if A+U:
                a_ratio = A/(A+U)
            else:
                a_ratio=0.5
            result = concatenate((result, array([[g_ratio,a_ratio,1]])))
        
        return result
Exemplo n.º 7
0
def Translate(array, translation):
    """Method for translating an array used by Simulations.Dacapo.Grid"""
    from Numeric import concatenate, take
    import copy
    newarray = array
    size = array.shape
    for dim in range(len(translation)):
        axis = dim - len(translation)
        newarray = concatenate(
            (take(newarray, range(translation[dim], size[axis]),
                  axis), take(newarray, range(translation[dim]), axis)), axis)
    # the array is copied to make it contiguous
    return copy.copy(newarray)
	def UpdateVTKData(self):
		"""Rereads the vtkPolyData"""
		from Numeric import concatenate,array,dot
		import copy
		# The null vector is omitted, can not be plotted
		# concatenating vectors and positions to a single list
		vecpos=concatenate((self.GetPositions(),self.GetVectors()),1)
		filtervecpos=array(filter(lambda vecpos,dot=dot:dot(vecpos[3:6],vecpos[3:6])!=0,vecpos))
		if len(filtervecpos)==0:
			raise ValueError, "All vectors are null-vectors"
		else:
			# Unpacking the filtered list, copied to be contiguous
			filterpos=copy.copy(filtervecpos[:,0:3])
			filtervec=copy.copy(filtervecpos[:,3:6])
			# The vectors scaled by scale
			self.GetVTKData().ReadFromPositionsVectors(filterpos,self.GetScale()*filtervec)
 def UpdateVTKData(self):
     """Rereads the vtkPolyData"""
     from Numeric import concatenate, array, dot
     import copy
     # The null vector is omitted, can not be plotted
     # concatenating vectors and positions to a single list
     vecpos = concatenate((self.GetPositions(), self.GetVectors()), 1)
     filtervecpos = array(
         filter(lambda vecpos, dot=dot: dot(vecpos[3:6], vecpos[3:6]) != 0,
                vecpos))
     if len(filtervecpos) == 0:
         raise ValueError, "All vectors are null-vectors"
     else:
         # Unpacking the filtered list, copied to be contiguous
         filterpos = copy.copy(filtervecpos[:, 0:3])
         filtervec = copy.copy(filtervecpos[:, 3:6])
         # The vectors scaled by scale
         self.GetVTKData().ReadFromPositionsVectors(
             filterpos,
             self.GetScale() * filtervec)
Exemplo n.º 10
0
def RepeatArray(array, periods):
    """Method for repeating an array according to periods
	
	This method is used for repeating an array according to the specified
	periods. 'periods' should be a sequence having the same length as the
	number of indices in 'array'. 

	**An example:**

	To repeat an array having three axis by (2,1,3) use:
	
	'RepeatArray(array,(2,1,3))' 

	"""
    from Numeric import concatenate
    import copy
    repeatarray = copy.copy(array)
    for i in range(len(periods)):
        repeatarray = concatenate(periods[i] * [repeatarray], axis=i)
    # the array is copied to make it contiguous
    return copy.copy(repeatarray)
Exemplo n.º 11
0
def iagaussian(s,mu,sigma):
    """  o Purpose
      Generate a 2D Gaussian image.

  o Synopsis
      g = iagaussian(s,mu,sigma)

  o Input
      s: [rows columns]
    mu: Mean vector. 2D point (x;y). Point of maximum value.
    sigma: covariance matrix (square).  [ Sx^2 Sxy; Syx Sy^2]

  o Output
      g: 

  o Description
      A 2D Gaussian image is an image with a Gaussian distribution. It can be used to generate test patterns or Gaussian filters both for spatial and frequency domain. The integral of the gaussian function is 1.0.

  o Examples
      import Numeric
      f = iagaussian([8,4], [3,1], [[1,0],[0,1]])
      print Numeric.array2string(f, precision=4, suppress_small=1)
      g = ianormalize(f, [0,255]).astype(Numeric.UnsignedInt8)
      print g
    f = iagaussian(100, 50, 10*10)
      g = ianormalize(f, [0,1])
      g,d = iaplot(g)
      showfig(g)
    f = iagaussian([50,50], [25,10], [[10*10,0],[0,20*20]])
      g = ianormalize(f, [0,255]).astype(Numeric.UnsignedInt8)
      iashow(g)
"""
    from Numeric import asarray,product,arange,NewAxis,transpose,matrixmultiply,reshape,concatenate,resize,sum,zeros,Float,ravel,pi,sqrt,exp 
    from LinearAlgebra import inverse,determinant 
    
    if type(sigma).__name__ in ['int', 'float', 'complex']: sigma = [sigma]
    s, mu, sigma = asarray(s), asarray(mu), asarray(sigma)
    
    if (product(s) == max(s)):
        x = arange(product(s))
        d = x - mu
        if len(d.shape) == 1:
            tmp1 = d[:,NewAxis]
            tmp3 = d
        else:
            tmp1 = transpose(d)
            tmp3 = tmp1
        if len(sigma) == 1:
            tmp2 = 1./sigma
        else:
            tmp2 = inverse(sigma)
        k = matrixmultiply(tmp1, tmp2) * tmp3
    else:
        aux = arange(product(s))
        x, y = iaind2sub(s, aux)
        xx = reshape(concatenate((x,y)), (2, product(x.shape)))
    
        d = transpose(xx) - resize(reshape(mu,(len(mu),1)), (s[0]*s[1],len(mu)))
    
        if len(sigma) == 1:
            tmp = 1./sigma
        else:
            tmp = inverse(sigma)
        k = matrixmultiply(d, tmp) * d
        k = sum(transpose(k))
    
    g = zeros(s, Float)
    aux = ravel(g)
    if len(sigma) == 1:
        tmp = sigma
    else:
        tmp = determinant(sigma)
    aux[:] = 1./(2*pi*sqrt(tmp)) * exp(-1./2 * k)
    
    return g
Exemplo n.º 12
0
 def row_gather(self,name):
     """experimental"""
     from Numeric import concatenate
     return concatenate(self[name])
Exemplo n.º 13
0
def get_episode_data(ep_data,step=1):
    from Numeric import array,concatenate,arange
    data = ep_data[0:len(ep_data):step]
    indices = [[float(i)] for i in range(0,len(ep_data),step)]
    
    return concatenate((array(indices)*1.0,data),axis=1)