beta = 1.0  # Boundary value at y = L

# Guessed values
s = [1.0, 1.5]

z0 = np.zeros(2)

dpdx_list = [-5.0, -2.5, -1.0, 0.0, 1.0, 2.5, 5.0]
legends = []

for dpdx in dpdx_list:
    phi = []
    for svalue in s:
        z0[1] = svalue
        z = rk4(f, z0, y)
        phi.append(z[-1, 0] - beta)

    # Compute correct initial guess
    s_star = (s[0] * phi[1] - s[1] * phi[0]) / (phi[1] - phi[0])
    z0[1] = s_star

    # Solve the initial value problem which is a solution to the boundary value problem
    z = rk4(f, z0, y)

    plot(z[:, 0], y, '-.')
    legends.append('rk4: dp=' + str(dpdx))

    # Plot the analytical solution
    plot(u_a(y, dpdx), y, ':')
    legends.append('exa: dp=' + str(dpdx))
Exemplo n.º 2
0
        
"""

def func(Theta, t):
    
    theta = Theta[0]
    dtheta = Theta[1]
    
    if dtheta >=0:
        out = np.array([dtheta, math.cos(theta) - mu*math.sin(theta)])
    else:
        out = np.array([dtheta, math.cos(theta) +  mu*math.sin(theta)])
    
    return out

mu = 0.4

Tau = np.linspace(0, 10, 101)

Theta_0 = np.array([0, 0])

THETA = rk4(func, Theta_0, Tau)

animatePendulum(THETA[:,0], Tau, l=1)





Exemplo n.º 3
0
from ODEschemes import euler, heun, rk4
import numpy as np

N=20
L = 1.0
y = np.linspace(0,L,N+1)

def f(z, t, dpdx=0.0):
    """RHS for Couette-Posieulle flow"""
    zout = np.zeros_like(z)
    zout[:] = [z[1], -dpdx]
    return zout 

s0=1.0
z0=np.zeros(2)
z0[1] = s0


z = rk4(f, z0, y)
phi0 =z[]
Exemplo n.º 4
0
figure(figsize=(20, 8))
# hold('on')
LNWDT = 2
FNT = 18
rcParams['lines.linewidth'] = LNWDT
rcParams['font.size'] = FNT

# computing and plotting

# smooth ball with drag
for i in range(0, N2):
    z0 = np.zeros(4)
    z0[2] = v0 * np.cos(angle[i])
    z0[3] = v0 * np.sin(angle[i])

    z = rk4(f, z0, time)
    plot(z[:, 0], z[:, 1], ':', color=line_color[i])
    legends.append('angle=' + str(alfa[i]) + ', smooth ball')

# golf ball with drag
for i in range(0, N2):
    z0 = np.zeros(4)
    z0[2] = v0 * np.cos(angle[i])
    z0[3] = v0 * np.sin(angle[i])

    z = rk4(f2, z0, time)
    plot(z[:, 0], z[:, 1], '-.', color=line_color[i])
    legends.append('angle=' + str(alfa[i]) + ', golf ball')

# golf ball with drag and lift
for i in range(0, N2):
# main program starts here

T = 10  # end of simulation
N = 20  # no of time steps
time = np.linspace(0, T, N+1)

z0=np.zeros(2)
z0[0] = 2.0

ze = euler(f, z0, time)     # compute response with constant CD using Euler's method
ze2 = euler(f2, z0, time)   # compute response with varying CD using Euler's method

zh = heun(f, z0, time)     # compute response with constant CD using Heun's method
zh2 = heun(f2, z0, time)   # compute response with varying CD using Heun's method

zrk4 = rk4(f, z0, time)     # compute response with constant CD using RK4
zrk4_2 = rk4(f2, z0, time)  # compute response with varying CD using RK4

k1 = np.sqrt(g*4*rho_s*d/(3*rho_f*CD))
k2 = np.sqrt(3*rho_f*g*CD/(4*rho_s*d))
v_a = k1*np.tanh(k2*time)   # compute response with constant CD using analytical solution

# plotting

legends=[]
line_type=['-',':','.','-.',':','.','-.']

plot(time, v_a, line_type[0])
legends.append('Analytical (constant CD)')

plot(time, ze[:,1], line_type[1])
Exemplo n.º 6
0
    a semicircle:

        theta'' = - mu*(theta')^2 +g/r(cos(theta) - mu*sin(theta))

        
"""


def func(Theta, t):

    theta = Theta[0]
    dtheta = Theta[1]

    if dtheta >= 0:
        out = np.array([dtheta, math.cos(theta) - mu * math.sin(theta)])
    else:
        out = np.array([dtheta, math.cos(theta) + mu * math.sin(theta)])

    return out


mu = 0.4

Tau = np.linspace(0, 10, 101)

Theta_0 = np.array([0, 0])

THETA = rk4(func, Theta_0, Tau)

animatePendulum(THETA[:, 0], Tau, l=1)